
NEIGHBORHOOD COMPUTATIONS FOR

LARGE SETS OF DATA POINTS

Kurt Brassel

State University-of.New York at Buffalo

INTRODUCTION

The growing use of cartographic data banks for mapping calls for an efficient

and flexible organization of geographic base files. Traditionally, spatial data are

stored by overlaying a grid on the area of interest and recording the properties of

the grid cells. In another approach the coordinate values describing the perimeter

of an area unit are used for location identification.

Recently Peuker and Chrisman have reported on projects ('Geographic Data Struc

tures' and 'Geograf') that utilize more advanced storage techniques (Peuker and

Chrisman, 1975)* Peuker stresses the need to assign a list of neighbors to each

spatial entity. In such a system data on a statistical unit would include, for ex

ample, not only a description of the polygon outline, the center identifiers, and in

formation on the characteristics of the unit, but also a list of identifiers corres

ponding to the areas contiguous to it. Neighborhood relationships can also be estab

lished for point-based data sets by assigning to each data point labels that identify

its neighbors. This neighborhood relationship can be illustrated by a triangulation

pattern in which each data point is connected with its neighbors by a line. Since

there are various ways to define data points as being neighbors of a point A, the

selection of neighbors is an ambiguous process. Among various triangulation ap

proaches Delaunay triangles can be used to determine the neighborhood of a data

point (Boots, 197*0.

Another way of defining a neighbor-based data structure for a set of data points

is to attribute an 'area of influence' to each data point and thus to create a set of

polygons describing the 'pattern of influence' of the set of data points. Such a pat

tern can be created by drawing perpendicular bisectors between neighboring data points

Note.: The. autkoi kcti> expie44ed IUA gratitude, to PiofieAAoi T. K. Peucfeet who

piov-ide-d fiundt, faom hu> leieoAcfo giant to make. tki* piojzct poAAtble,; tkank* asm att>o

due, faon kU> AuggeAtiont> le.adi.ng to tki& algoiitkm, and ge.ne.iat adv-ice.. The, px.oje.ct

ka*> been ^>ub^i.diize.d by ^unck. o& tke- SwiAA National foundation (Sckwe^ze*u>cke.tL National-

o'omii), the. 0^-cce ofi Naval Re^eaAcfi, and tke. Laboiatoiy £01 Compute* GiapklcA and

Spatial Analyst*, Haivaid

Tke. autkoi ka>> aJti>o exp^.e44ed hit* tkankt, to R. TowteA, Simon F/iaAe.1

kit testing and /lev-Li-con oft tke. compute*, psiogsiam to tkiA algoiitkm.

337

as seen in Figure 1. The resulting polygons are called Thiessen polygons. The ma

jor problem in generating Thiessen polygons, however, is to specify the Thiessen

neighbors, i.e., the data points whose Thiessen polygons are contiguous to the

Thiessen polygon of the point in question. Once these neighbors are found, they

can be used to generate a triangulation pattern. By definition Delaunay triangles

correspond to the connection of Thiessen neighbors. The Thiessen approach, there

fore, can be used to generate both types of base files: to store triangulation as

well as space allocation models.

Various authors have discussed the generation of Thiessen polygons (Thiessen

1917, Whitney 1929, Keeney 1971), and recently Rhynsburger (1973) has published a

method for analytic delineation of Thiessen polygons. Searching for the Thiessen

polygon about a data point A, he constructs perpendicular bisectors to all other

points of the data set and extracts the innermost polygon formed by these lines a-

bout the center. This innermost polygon he calls the 'interior envelope 1 (Rhyns

burger 1973, P. 137)• Since this process of generating interior envelopes is re

peated N times (where N = number of points in the data set), about N*N*6 perpendic

ular bisectors are to be generated, which is inefficient for large sets of data

points. The basic source of this inefficiency is that Rhynsburger uses a global

method to solve a local problem. In order to define the polygon outline of one data

point, his algorithm consults the whole population of points, rather than only

points in the neighborhood. The problem, of course, is that the neighbors are not

known at the beginning of the procedure.

The present paper describes another approach to generating Thiessen polygons

which uses local processes and thus is suitable for processing large sets of data

points.

Euju/uz. 1. 	 Sample, ofi a Th£eAA(>.n polygon A&iuctusie. *hou)<ing the. data pot

polygon* (&oLid &n&>], and V&taunay

338

BASIC CONCEPT OF THE PRESENT ALGORITHM

In this discussion a centroid is considered equivalent to a data point. A poly

gon edge is defined as the locus of all points equidistant from two centroids and not

closer to any other point in the data set. Locations equidistant to three centroids

(and not closer to any other centroid) are called vertices. Pairs of polygons with

a common edge are called neighbors (Thiessen neighbors), and pairs of polygons with

a single vertex in common are called half-neighbors. The terms "neighbor" and "half-

neighbor" are pertinent to both polygons and data points.

Given a set of data points in the plane, the first step sorts these points in

both x- and y- directions, and assigns to each point the following pointers:

-XUP pointer, points to the next centroid in positive x-direction

-XDN pointer, points to the next centroid in negative x-direction

-YUP pointer, points to the next centroid in positive y-direction

-YDN pointer, points to the next centroid in negative y-direction

The XUP and YUP pointers are visualized as arrows in Figure 2.

P o 1 n t e r s

Point Coordinates Positive x Negative x Positive y Negative y

Identifier x y direction direction direction direction

XUP XDN YUP YDN
A"^ yf

l 1.0 1.0 5 _ 2 _
1 3 *^x / 2 11.0 2-5 4 3 3 1

.1 f>.5 5 2
/ ^^ / 5.5 2 4

4 13.5 10.5 _ 5 3
/ ^% 2
.'I—-- 2 3.5 1 - 4
5 13.5 3

F/tgu/te 2. Po-int^A A&Luctusi<i a4ecf tfo/t. the, c,ompuutcuU.on oft polygon.

The basic strategy used for the computation of Thiessen polygons is to first

find edges, vertices, and neighbors of a first point A (compare Figure 3) • As

suming that a first true neighbor X of A is known, we are searching for the next

true neighbor of A in clockwise direction and find centroid B and a vertex V-] 9 This

clockwise search is repeated until the originally known point X is found as the next

true neighbor in clockwise direction (X^B-KJ+D+Y+X) . At this time the entire polygon

about A is known, and the search is continued by finding the polygon about a centroid

contiguous to point A, e.g. point B. Already known neighborhood relationships ('B is

neighbor of A') and known vertices and edges, however, are not computed again, but

reused in this step. The search continues by completing all polygons contiguous to

A, and then all polygons contiguous to the polygon about B are computed, etc. Start

ing at data point A, the search is spreading radially, and it is completed as soon as

the farthest polygon is processed.

Given this strategy, the following problems remain to be solved:

1 . To develop a procedure which finds the next true neighbor

(B) in clockwise direction of an already known true neighbor

339

(X). Implicitly this problem is identical to finding a

vertex V delimiting the perpendicular bisector between

A and X.

2. To find a first neighbor X of an area A.

THE SEARCH FOR A THIESSEN NEIGHBOR

The search for the next true neighbor

of A in a clockwise direction from B is per

formed essentially in three steps:

• find a possible neighbor

e find a highly probable neighbor

e find the next true neighbor and

the respective vertex.

The first two steps are illustrated by Figure

h below. Assuming that A is the centroid of

interest and point B is known to be a neigh-

3 bor of A, then we assume the next neighbor

(clockwise) will be within the sector de

fined by the lines XB, ab, and y^. We are therefore searching for a highly probable

neighbor C' within this sector. This is done by starting at the known points A and

B and examining the data points in the sequence of either of the four pointer struc

tures XUP, YUP, XDN, or YDN. Starting at point B we proceed along the XUP (positive

— — —-*• XUP

4. Search fan a kighty pn.oba.biLo, n&Lghbon.. Potent A Jib tke. c.e.n£no*.d o£
B it> atn.za.dy known OA beting a noA-Qhbon. ofi A. The kigkty pn.obabte.

next n&ighbon. C u> &ound by a&t&inatzty fiottowsing the. po^ntzn. Ae,quwc.&> AJI
pptxitivt x-d^iec£con (XUP) and poAJJx.ve. y-diA&ction (VUP] , and poking points
-in an ' ^nnnnmoAt 1 tnanaatud Aquan.n. Vttp&nding on tka n&£a£iv<i po^^ition o&
po-Lnti> A and B the. Ae.an.ck may be peA^o/uneci -en anotk&i qaandnant and w^th oth&i

4eqaence4 ^n.om among XUP, XNP, VUP, and VVN.

X direction) sequende until we find a point within the quadrant (B-*F~*G). Point G

is a possible neighbor and, in connection with points A, B> and G, implicitly de

fines a truncated square (ABRSTA) which is used for the search for a highly probable

neighbor. Starting from point A and proceeding along the YUP pointer sequence (posi

tive y-direction), a point C' is found within the said truncated square. C' defines

a still smaller truncated square, and the search for a point within this new trun

cated square is continued along the XUP sequence (starting from point G). Switching

between these two pointer sequences, the search is repeated until no further point

is found in the innermost square. The point creating that square (C') is then called

a highly probable neighbor.

In most case the highly probable neighbor C' is the next true neighbor (Figure

5). Even though point C' defines a smaller square with respect to A and B, point C

5. Seo/tcA faon. a. &WJL n<txt nesigkbon (cAJicln tzAt] . Ghxin a kigkty px.obab£e.

nuigkbon. C' uiith leAp&ct to potntA A and B, a v&itux. I/' (CxtAcuwicew^eA oft

&iiangt.<i ABC') and a CAAcJLa u> de&oied. Ifi tk&ui i& no otkoji data po-int

CAA.CZ&, tknn C' u> a £tue nixt nuigkbofi, otk&iw-lbe. tuck a data po<int (C)

nm klghty ptLobabtn n&igkboi, and the. c/tAde. t&>t <i!> sie.p<iate.d.

is the next true neighbor in clockwise direction. V is the polygon vertex as de

fined by points A, B, and C', and V is defined by A, B, and point C. By definition

V cannot be a Thiessen polygon vertex because a point C is closer to V than 'the

three equidistant points A, B, and C ' .

To replace the highly probable neighbor C' by the true next neighbor C, the

circle through points A, B, and C' (centered in V) is drawn and a search for cen-

troids within that circle is performed. In this search — which we call the 'circle

test 1 — the discussed pointer structure is used in a similar fashion as before. If

a point is found within the circle, a new (smaller) circle is constructed and the

circle test is repeated. Point C is a true next neighbor if there is no centroid

within the circle about A, B, and C.

If point B lies in another quadrant with respect to point A, the search is con

ducted in an appropriate -sector using an appropriate pair of pointer sequences

(XUP/YDN, XDN/YDN or XDN/YUP).

6. Fou/i data. po^ntA loc.at<id

on tke. &ame. cxAc£e. about tk<t

V OSLO, poAAWiAe. kai

(a). By AktA-n one, data

po<Lnt (V) by an

tanc.n tk<L

If a point D (Figure 6) is located

on the outline of the circle as defined

by A, B, and C (and assuming that no

point is within the circle), then the

polygons about A, B, C, and D have one

point in common, and two of these cen-

troids are pairwise half-neighbors each.

In this situation the new point D is

shifted by a very small amount so that

it lies either within or outside the

circle (Figure 6, b, and c).

So far we have assumed that we can

find at least one data point in a search

sector as shown in Figure U. A further

assumption was that at least one neigh

borhood relationship is known as we

start our procedure.

The basis of these two assumptions

is demonstrated by the procedure discus

sed in the next section.

BORDER PROBLEMS AND INITIALIZATION

With respect to Thiessen polygon

generation, a set of data points in the

plane can be divided into two subsets:

one type of data points generates closed

polygons (Polygons U-9 and 12 in Figure

7), the other subset generates open poly

gons (1-3, 10, 11, 13-15). For all

points generating open polygons there

will be at least one sector as defined

in Figure k in which no next neighbor

will be found. In order to allow the

search procedure as outlined in the pre

vious paragraph to be used for both

cases, the following solution has been

found:

• The set of N Thiessen polygons

is assumed to be bounded by a

rectangular border line (paral

lel to the rectangular coordi

nate system used). The four

border lines can be arbitrarily

defined.

• Four dummy data points are

added to the data set, one

across each border line.

The rectangular border line and the location of the four dummy points are il

lustrated in Figure 8. Assuming that the polygon about point A is searched for, the

four dummy points are situated across each four border lines such that the line con

necting point A with any dummy point is perpendicular to the respective border, and

divided in half by it. In other words, if point A originally generates an open poly

gon, at least one of the four dummy points will be found as a true next neighbor,

and the perpendicular bisector between point A and this dummy point represents ex

actly the predefined border outline.

After the polygon about A has been computed, the dummy points have to be shifted

to a position across the newly processed centroid B. This implies a change of both

the coordinate values of the dummy points and their location in the pointer struc

ture. If a delimitation of the set other than by a rectangle is desired, then the

arbitrary borders have to be positioned an adequate distance from the data points

and the polygon structure has to be clipped in a subsequent step (Figure 7).

This concept of using a predefined border and dummy points allows for initial

izing the search procedure as well. A corner of the bounding rectangle by defini

tion is an element of the centroid closest to it. Assuming that A in Figure 3 is

closest to the corner point Vo , then V0 is a Thiessen vertex generated by A and its

two dummy points X and Y. X then can be used to find the true next neighbor in

clockwise direction (B).

CONCLUSION

This paper has presented an algorithm for finding Thiessen polygons and Thies

sen neighbors for a set of N data points. Given four border lines delimiting the

set of data points, the process picks out the data point closest to the lower left-

hand corner, finds its neighbors and computes its Thiessen polygon. This is done point

by point in clockwise order. The search for one neighbor point includes a step to

find a highly probable neighbor within a predefined sector and, as another step, the

'circle test 1 , which finds the true next neighbor. In both these steps only data

points in the neighborhood of the data point in question are consulted. For this

search four additional dummy data points are added to the data set. These points

are located in a way that open polygons are delimited by border lines as defined

above. Once the polygon closest to the lower lefthand corner is generated, the poly

gon contiguous to it is processed. Ideally the processing spreads radially and is

completed as the polygon farthest to the lower lefthand corner is determined. Since

this algorithm finds Thiessen neighbors and polygons in a local process, it can be

applied for large sets of data points.

A PL/1 program of this algorithm is being developed, and a first test run for

300 data points has resulted in an execution time of about 10 seconds on an IBM

370/165 (Figure 9). This program is presently being further tested and revised by

R. Fowler, Simon Fraser University.

F-tgote 7. Cteecf and open Thxte64en po^t/goni. The 0^ poty-
gon ctipp'ing iA ^ind^c.cute,d by a dotted outline..

fW

w

-•z

A,B CENTROIDS

ARBITRARY BORDER

W,X,...Z DUMMY POINTS

9. Sample, plot oft Thiu&zn polygon* (300 randomly Qnn&iatzd data

REFERENCES

1. 	 Boots, B.N., "Delaunay Triangles: An Alternative Approach to Point Pattern

Analysis," Proceedings of the American Association of Geographers, Vol. 6

(197*0, pp. 26-29.

2. 	 Keeney, R.L., "A Method for Districting Among Facilities," Operations Research,

Vol. 20, No. 3 (1972), pp. 613-618.

3. 	 Peucker, T.K., "Geographical Data Structures Report After Year One*" Simon

Fraser University,

4. 	 Peucker, T.K., and N. Chrisman, "Cartographic Data Structures," The American

Cartographer, Vol. 2, No. 1 (1975), pp. 55-69.

5. 	 Rhynsburger, D., "Analytic Delineation of Thiessen Polygons," Geographical

Analysis, Vol. 5 (1973), PP.

6. 	 Thiessen, A.H., "Precipitation Averages for Large Areas," Monthly Weather Re

view, 39 (1911), PP. 1082-108U.

7. 	 Whitney, E.N., "Areal Rainfall Estimates," Monthly Weather Review, 57, (1929),

pp. if62-^63.

