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Overview

The automation of cartography demands the explicit 
analysis of maps and elaboration of their structure. 
Previously, cartographers dealt intuitively with 
these matters and developed their intuition through 
study and apprenticeship. Today, the application of 
mathematical theories is required so that the goals of 
automation may be achieved without sacrificing the 
informative character that cartographers intuitively 
infused into maps. This is not to say that we can 
automate cartographic intuition, but that we can avoid 
frustrating it, if we are careful.

A study of the nature of maps leads one to a variety 
of mathematical fields. T°j:>oJjO£X addresses the 
strongly held intuitive ideas we have regarding the 
nature of space and dimension.

In graph theory one studies linear networks, which 
occur in maps in many ways. Boundaries of regions, 
transport routes and tributary systems may all be 
regarded as graphs. A point of connection between 
graph theory and topology, namely the study of planar 
graphs, is particularly interesting. Here we see 
that both fields share a symmetry called "duality," 
having important practical implications.
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More abstract structural features of maps are in the 
domain of lattice theory and hypergraph theory. 
Lattice theory involves partial orderings, such as the 
nesting and overlap of regions, and hypergraph theory 
is a generalization of graph theory that has been 
applied to the problem of representing maps.

The metrical features of maps, distances, angles, 
areas, etc., are studied in analytic and protective 
geometry. These fields are traditionally learned by 
cartographers as a basis for projections and scaling. 
No more will be said regarding these topics, since 
they are already well known.

An applied mathematician endeavors to simplify and 
clarify a theory and then transform theorems into 
algorithms. The importance of abstract algebraic 
theories cannot be over-emphasized for simplication 
and clarification. Without them, one's ontology may 
inflate to ponderous size and computer programs are 
correspondingly patched and disorganized. In the 
following pages, we examine portions of these theories 
relevant to cartography and emphasize the connections 
among the various mathematical fields.

Topology - the Foundation .for Automated Cartography

We look first at topology, since it provides a 
foundation for automated cartography, just as our 
intuition is the foundation for manual cartography. 
This discussion occupies most of the paper. The three 
figures in figure 1 are equivalent in the sense that 
each may be continuously modified into the others. 
Topology is concerned with the properties that the 
figures share, i.e., with what remains unchanged 
under continuous deformation.

Homeomorph ism

A topological transformation, also called a 
homeomorphism, is a continuous deformation, 
intuitively a rubber sheet transformation, where 
neither rips nor folds are permitted. A precise 
definition of homeomorphism in terms of mappings and 
continuity can be found in any text on topology but 
the intuitive idea will suffice here. The three 
figures in figure 1 are homeomorphic but the two 
figures in figure 2 are not, because a cut must be
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made in the interior of a to deform it into b. 
Alternatively, the points on the boundary of the hole 
in b must coalesce into a single point (a singularity) 
to transform b into a. This would also violate the 
requirements for homeomorphy.

TOPOLOGICALLY EQUIVALENT

Figure 1.

.O 0.
TOPOLOGICALLY DIFFERENT

Figure 2.

Cells and Complexes

Armed with homeomorphism, one can deform simple 
objects and combine them to create complex structures. 
This is the approach of combinatorial topology. The 
building blocks of combinatorial topology are called 
cells. A 0-cell is a point; a 1-cell is a simple 
curve; a 2-cell is a disk or rubber sheet deformation 
of a disk. In general an n-cell is a homeomorph of an 
open n-dimensional spheroid, i.e.

n
{x € R I d(x,0) < 1}

The boundary of an n-cell is an (n-1) - circuit. The 
boundary of a 2-cell (a disk) is a 1-circuit (a 
circle) and the boundary of a 1-cell (an arc) is a 0- 
circuit (just a pair of points). An n-circuit is the 
homeomorph of an n-dimensional sphere, i.e.

n+1
{x € R I d(x,0) = 1}

N-cells, n-circuits and the boundary relation between 
them are all topological. Any n-cell is homeomorphic
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to any other n-cell. Any deformation of a disk 
produces a 2-cell (by definition), and the circle 
bounding the disk becomes the 1-circuit bounding the 
2-cell, so the boundary relation is also topological.

We can now begin to describe a map in topological 
terms, i.e. in a way that does not depend on 
projections or scales or shapes. A map is a 2- 
dimensional complex, which is a collection of 0-cells, 
1-cells and 2-cells such that:

1) Every 2-cell is bounded by 1-cells in the 
collection;

2) Every 1-cell is bounded by 0-cells in the 
collection;

3) Every 0-cell is on the boundary of some
1-cell;

4) Every 1-cell is on the boundary of some
2-cell.

Figure 3 illustrates the topological description of a 
map. There are three 2-cells, six 1-cells and four 0- 
cells. Also, the 1-cells bounding a 2-cell form a 1- 
circuit.

0-cells: 1, 2,3,4

1-cells: a, b, c, d, e

2-cells: NM, OK, TX

A MAP IN TOPOLOGICAL TERMS

Figure 3.

By merely describing a map as a collection of 
topological objects, we have done more than provide an 
esoteric vocabulary. We have described features that 
are utterly 'independent of measurements, coordinates 
and shapes, which are structural features of the map 
and thus are important for representing the map in a 
computer.

85



Surfaces

Now we can synthesize a representation of a map by 
combining n-cells, but our topological description of 
a map is not yet complete. A map is not an arbitrary 
2-dimensional complex, rather it is a smooth 2- 
dimensional surface. In fact maps are almost always 
drawn on planes or spheres, imposing further 
topological restrictions.

On a smooth surface (or manifold) every point is 
contained in an open disk and this restricts the way 
in which n-cells may be combined. It can be proven 
that this restriction is equivalent in combinatorial 
terms to:

1) Each 1-cell is incident with exactly two 
2-cells.

2) At each 0-cell there is a unique umbrella, 
i.e. a cyclic alternating chain of 1-cells 
and 2-cells.

The two conditions are stated imprecisely here but 
figure 4 will make the idea clearer. For a full 
treatment the reader is referred to standard texts on 
combinatorial topology. Anyone familiar with Dual 
Independent Map Encoding (DIME) will recognize that 
condition 2 is tested in the DIME node edit, and that 
condition 1 is automatically satisfied.

Dimension

Very few cartographic maps represent 3-dimensional 
objects. The surface of the earth is 2-dimensional; 
to determine a point only 2 coordinates, longitude and 
latitude, are required. Although altitude may also 
be specified it merely describes the embedding of the
2-dimensional object in a 3-dimensional space.

3-D is much more complicated than 2-D. For example, 
knots are possible in 3-D but not 2-D.
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Condition 1
that every 1-cell be on the boundary of exactly 
two 2-cells is violated

Condition 2
that every 0-cell be covered by an
umbrella is satisfied.
The umbrella is A-3-B-2-C-1-A.

NECESSARY CONDITIONS 
FOR A SURFACE

Figure 4.

Duality

Although we are still discussing topology, it is well 
to note that duality is a symmetrical relation that 
occurs in many parts of mathematics. We are concerned 
with duality in topology (Poincare duality) and in 
graph theory (geometric and combinatorial duality). 
The Poincare duality is shown for 2 and 3 dimensions:

2-D
Primal
0-cell

1-cell

boundary

Dual
2-cell

1-cell

coboundary

3-D
Primal
0-cell

1-cell

boundary

Dual
3-cell

2-cell

coboundary

Poincare Duality
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The principal of duality is that if in a theorem about 
n-cells or boundaries and coboundaries, one replaces 
every occurrance of a primal by its dual and visa 
versa then the new statement is also a theorem. In 
automation it means that any topological structure or 
facility provided for a primal must also be provided 
for a dual and visa versa. This is actually a great 
advantage, since it halves the number of programs we 
need for a large class of topological calculations, 
such as programs for chaining and computing incidence 
relations. It is this symmetry that spawned the DIME 
code, which itself is symmetrical in the same way.

Extensions

It is useful on occasion to extend a theory to 
accomodate an application, rather than force the 
application to fit existing theory. Corbett extended 
topological theory outlined above to include 
singularities, to model cartographic features interior 
to 2-cells. Figure 5 shows how an embedded tree is 
constructed by a singular transformation, rather than 
a homeomorphism.

Singularity

FORMING A TREE BY SINGULAR 
TRANSFORMATION

Figure 5.

The singularity occurs when distinct points coalesce 
to become one, violating the smooth deformation 
requirement for a homeomorphism.

Corbett also generalized 2-cells in the model to 2- 
cells with holes, as though parts had been removed 
with a cookie cutter. This was to accomodate 
cartographic features like lakes and islands in lakes 
without introducing artificial cuts from the border to
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the hole. The cuts are needed to make the boundary of 
a region a single circuit. One would traverse the cut 
once from the outer boundary to the hole and again in 
the reverse direction.

The extension to 2-cells with holes was accomplished 
by including homology theory. The homology group 
classifies disks with holes by counting the holes. 
Referring to figure 6, we see that even complicated 
arrangements of lakes and isl.ands are treated directly 
in homology theory without recourse to artificial 
cuts.

—Artificial Cuts 2-cella with holes
to make the which are also 2-cells
boundary one circuit with holes

HOMOLOGY THEORY AVOIDS 
ARTIFICIAL CUTS

Figure 6.

An example of a useful calculation involving 
homology is determining what regions are interior to 
an arbitrary 1-circuit topologically - not by point in 
polygon algorithms. Figure 7 illustrates this 
computation.

-A/4-
•*b-

2-Cells inside circuit 
are identified by computing 
the homologous circuits 
dande

HOMOLOGOUS CIRCUITS

Figure 7. 
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One merely makes a counter clockwise walk around c 
collecting the 2-cells on the left. The boundary of 
the collection is both c and the homologous circuit d. 
To continue d must be traversed to collect 2-cells 
interior to it. Ultimately the entire 2-cell is 
filled in. This completes the outline of the 
topological theory. We next look at map encoding 
techniques and then proceed to graph theory, etc.

Topological Character of Map Encodings

It is instructive to examine current map encoding 
methods in light of the topological theory of maps. 
Figure 8 illustrates the methods. The most primitive 
encoding is a tracing of the lines and possibly 
annotation of a map. Generally, the traced lines will 
not connect resulting merely in a set of 1-cells with 
associated metrical data.

POLYGON
NM: (XiYi)(X2Y2) 
OK: (Xi 1 Yi'1 )(Xa1 Y21 )

DIME 1
b: 3, 2, NM. OK 
c:1,3,NM, TX

Grid Cell
Row 2: NM, NM, NM, OK, OK 
Row 3: NM. NM, NM. TX, OK

t Triangulation 
J.NM:T1,T2,T3,T4 
! OK:T5.

TOPOLOGICAL CHARACTER OF MAP ENCODINGS

Figure 8.

If one goes to the trouble of connecting the lines, 
e.g. by forcing end point coordinates to agree, then
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the topological structure is a linear graph, which is 
a great deal more.

A similar method is to trace region boundaries forming 
a 1-circuit for each region. Again, common boundary 
lines will fail to match, unless one goes to the 
trouble, a great deal of trouble in fact, to force 
them to match.

In the former case one has a collection of 2-cells 
with a metrical description of their boundaries, in 
the latter much more topological information. To the 
extent that boundaries match, one can identify 1-cells 
and 0-cells.

The DIME method is based on the topological theory, 
taking particular advantage of duality. In DIME each 
1-cell is coded along with its two bounding 0-cells 
and two cobounding 2-cells. Of course, each n-cell 
may have its metrical description coded also—for a 0- 
cell its coordinates, for a 1-cell or a 2-cell its 
shape, subject to the metrical description of its 
boundary.

A grid cell description of a map forces region 
boundaries to conform to grid cell boundaries, so we 
have a set of highly regular 2-cells with implicit 
adjacency relations and no particular 1- and 0-cell 
data. Sometimes the existence of essential 1- and 0- 
cells can be inferred from the grid data, however, it 
is impossible in a grid cell map to represent the 
intersection of five or more lines. The advantage of 
gridding is that there are available many picture 
processing algorithms and some algorithms, e.g., 
merging two maps, are greatly simplified.

Finally, triangulation is used by many digital terrain 
models also because of the existence of certain useful 
algorithms such as contour interpolation. Here we 
have a simplicial complex, i.e., a complex of 
simplexes (triangles) rather than the more general 
cellular complex of 0-, 1- and 2-cells. Triangles are 
highly regular 2-cells. Indeed, the topological 
theory of complexes is usually developed starting with 
simplexes and generalizing to cells.

One pays for the algorithmic simplicity of highly 
regular cells in an inability to conservatively extend
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the theory. Fusing grid cells or triangles does not 
generally produce grid cells and triangles but fusing 
2-cells does yield 2-cells. So one can not apply the 
theory or the programs to constructed objects, like 
neighborhoods, in the case of regular cells.

Graph theory, like topology, is a rich source of 
mathematical ideas useful in cartography. The 
usefulness is enhanced by the more general 
applicability of graph theory to computation and 
operations research, which has motivated much 
investigation and produced many algorithms, such as 
minimum path algorithms.

Obvious applications of graph theory to cartography 
and related topics are the flow problems, like 
computing hydrologic and transport flows. Many not so 
obvious applications are related to planarity and 
duality. This connection to topology sheds light on 
both subjects.

A graph is a set of points and lines such that each 
line is terminated by points in the set. In a 
directed graph the lines also have direction. The 1- 
skeleton of the 2-dimensional complex is a graph.

A planar graph can be drawn on a plane or sphere with 
no line intersections. For cartography the most 
useful characterization of planarity is MacLane's, who 
solved the problem by proving that a graph G is planar 
if and only if it contains a certain number of loops 
L(l) , L{2), .... , L(n) and

A. Every arc of G belongs to exactly two loops;
B. The only independent relation satisfied by 

the loops is

2Mi) = 0.

Figure 9 illustrates MacLane's theorem and the adding 
of loops.

Now the connection to topology becomes clearer. Here 
condition A is the same as condition 1 that a complex 
be a surface. The pair of conditions A and B imply 
conditions 1 and 2. So, the MacLane's test for
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planarity is very much like the topological test for 
smoothness, but planarity is a bit stronaer.

Addition of loops
in MacLane's Theorem.

GRAPH THEORETICAL ALGEBRA 
OF LOOPS

Figure 9.

The connections between graph theory and topology are 
strong. The geometric dual of a graph is just the 2-D 
Poincare dual of topology. The requirements for a 
smooth surface correspond closely to the planarity 
requirements. Many of the topological tests, like the 
DIME node edit (umbrella test) , are just graph 
theoretical analyses of the 1-skeleton or the dual 1- 
skeleton of the 2-dimensional model.

Indeed, a very large part of the topological theory 
can be reformulated in graph theoretical terms, and 
this, largely by substituting vocabulary. We would 
say, for example, that a DIME file is an encoding of 
the graph and its dual, rather than 1-cells and their 
incidence relations.

Lattice Theor^

We now turn to lattice theory, which is even more 
abstract than graph theory. In the United States, the 
nation contains the states and the states contain the 
counties and the counties contain the cities 
sometimes, but sometimes cities span county 
boundaries. The "sometimes" destroys the hierarchy, 
resulting in an unwieldy partial order. The order is 
the order of containment and it is partial because 
some pairs of elements are not related by set 
containment.
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Partially ordered sets with certain restrictions are 
the subject of lattice theory. There are many 
examples of posets in cartography such as the nesting 
and overlap of regions and networks. A Basse diagram, 
as in figure 10, represents a poset in a way that 
suggest an economical storage scheme for data files.

Such a lattice provides a useful control structure for 
geographical and related operations, such as 
tabulating data by a variety of geographic 
identifiers.

A HASSE DIAGRAM

Figure 10.

It is also worth noting that in lattice theory one can 
state a large part of the topological model but not as 
much as in graph theory. If the n-cells are regarded 
as closed point sets, i.e. sets containing their 
boundary, then the lattice theoretical connections 
among the cells are the boundary and coboundary 
relations, but without orientation.

Completeness

The reason for developing and applying these theories 
is to provide an information system to support 
automated cartography. The test of an information 
system is whether it answers the questions we need 
answered.

An information system modelled on the theories 
discussed above will be able to answer questions about 
the nature of the modelled map, (is it a sphere?), 
about incidence and adjacency relations, (does 
Lichtenstein share a border with Switzerland?), about
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the valency of nodes (how many streets intersect at a 
point?), about distances, sizes and angles (what is 
the area of Alaska?), etc. Because of the breadth of 
these theories and our care in applying them, we can 
have confidence in our ability to answer any question 
that could be answered by examining an ordinary map or 
set of maps.

To answer the mathematical question of completeness, 
i.e., can all possible questions regarding the map be 
answered, would require formalizing the theory in the 
manner of logicians. Even then we would be faced with 
the incompleteness inherent in arithmetic demonstrated 
by Goedel. So we proceed less formally, in the manner 
of most mathematicians, and satisfy ourselves that we 
have captured all the known phenomena.
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