
EFFICIENT MULTI-ATTRIBUTE RETRIEVAL

OVER VERY LARGE GEOGRAPHICAL DATA FILES

John L. Pfaltz
Dept. of Applied Math, and Computer Science

University of Virginia
Charlottesville, Va. 22903

Retrieval, or data access, in useful geographical data bases is
typically characterized by three conditions:

a. the files are large; we expect over a million records, or
i terns;

b. the files need not be homogeneous; different geographical
items may be represented by records of differing lengths and
formats; and

c. a desired item, or set of items, may be identified by more
than one characterizing attribute.

Data access must take place in this kind of environment.

An attribute of an item, or record, is a descriptive value which
may serve to characterize, or identify, the item. Unique identi
fiers, such as social security numbers, are attributes; but so
are descriptive terms such as "city", "road segment", "land
parcel", etc. All geographic data files are inherently multi-
attribute files, since each item is characterized by at least two
coordinates specifying its spatial location. And normally there
are many more attributes, such as "land use", "assessed value",
"traffic density", "population", etc.; where not all attributes
need be specified for a given type of item; where not all attri
butes need be specified in a given retrieval request, or query.
For example, a procedure may issue a query for all items such that:

36.5 $ lat ^ 38.3, 75.2 $ long $ 79.0, type = church,
and assessed value > 85,000.

Consideration of such typical queries provides additional charact
eristics desired in an effective geographical data retrieval
system.

54

d. Partial-match retrieval, in which only some subset of the
identifying attributes are specified, should be possible,

e. It should be possible to retrieve over a range of attribute
values.

And finally, it would be desirable if:
f. as more identifying attributes are specified, the system

responds with less computational cost;
g. the system could be "tuned" to respond more efficiently to

commonly expected queries, while still retaining the
capacity of handling less frequent queries; and

h. the system could handle (essentially) simultaneous queries
from the same, or different, users.

Retrieval using indexed-descriptor files appears to provide many
of these desirable characteristics.

Any attribute, A., may take on a range of attribute values, v.,
j j

appropriate for that attribute. For example, 36.5 and 38.3 may be
attribute values for the attribute "lat", as may any real number
in the interval (-90.0,+90.0). "Church" may be a value of the
attribute "type". We shall use A. to denote the j-th attribute in

J

the system; and v. to denote any particular value of that
attribute.

A descriptor, D, is simply a bit string (of zeros and ones),
conceptually subdivided into f fields. Each field, F. (1 ^ j s f) J
corresponds to a single attribute defined withing the system. For
example, a single descriptor in a system handling only four
attributes might look like:

01000 100 000010000 0000001

The width (number of bit positions) in each field is denoted by
w.; the entire descriptor width denoted by w. Readily £.w. = w.
J J

We will assume the existence of f separate transformations
T.:{v-} -> [l,w.j], each of which maps a valid attribute value, v.,
J J J J

in its domain into a single bit of the corresponding descriptor
field. These transformations, which should map values in a
relatively uniform manner over the field, form the only link
between the indexed-descriptor files and the actual attribute
values. They are tailored to the particular set of attribute
values, and are usually quite easy to construct.

As each item, or data record, R is entered into the system, each
of its characterizing attributes (v-j ,v 2 ,... .vJ are transformed,
and bits T-, (v-,), T2 (v2),... 5 T^(v^) are set to form its associated

55

record descriptor D R , similar to the one shown above. Each record

descriptor will have precisely one 1-bit set in each of its f
fields (assuming all attributes are common to all items, fewer
otherwise).

Now consider a typical partial-match query that does not involve
range searching. Normally only some subset, say q values, of the
possible f attributes are specified in the query. Suppose they
are (vj.Vg,.. »v'). (Here we are being mathematically imprecise,

since they need not be the "first" q attributes, they can be any q;
but we want to avoid double subscripts.) We will form the
associated query descriptor, Q, by transforming each of the spec
ified query values, v^, setting bit T.(V!J) in the correspondingj J J
field of Q, and resetting the unspecified attribute fields to all
zeros (a "don't care" condition). Thus each query descriptor Q
will have precisely q ^ f bits set.

Now, using just record descriptors and query descriptors we could
design a rudimentary retrieval system. We could create a search
file consisting of just the individual record descriptors,
together with pointers to the actual storage location of the assoc
iated data record. Now we could sequentially compare the query
descriptor Q with each record descriptor d in this search file.
If Q £ DR then R may_ satisfy the query; it must still be accessed
and its actual attribute values (v,,...,v^) R compared with the
specified query values (v,,...»V')Q. But if Q <£ DR then R can
not possibly satisfy the query; we may skip on to the next record.
This rudimentary retrieval scheme has a few attractive features.
First, descriptor comparison is very much faster than the compar
ison of individual attributes. Also, the fixed length descriptor
records (with their pointers) of the search file are very much
shorter than their associated data records, and thus can be
accessed from storage in larger units. Even so, the sequential
scanning of the million, or so, record descriptors in the search
file is clearly impractical. But it does suggest an idea which is
the conceptual key to forming i_ndexe_d-descriptor files.

In the data file, which we denote file-0, several data records are
packed into a single block, p, and a block descriptor D is formed

P
by OR-ing together each of the individual record descriptors, that
is, D 0 = VDD for all R in p. Now these block descriptors D.

P K P
(together with pointers denoting the storage address of the block)
are accumulated to form a sequential search file, which we call
file-1. If QQD0 then the entire block will be accessed and the

P

56

actual attribute values of each record will be compared with the
query values to see if it satisfies the query. But if Q$£ D D then' P
no record in the block can possibly satisfy the query; all may be
safely skipped, and the next block descriptor examined. If r~
denotes the total number of records in the data file-0, and pn
denotes the packing (or blocking) factor of records per block, then
clearly there will be only TQ/PQ block descriptors in the index
(or search) file-1. " ro/Pn" ma^ st ill be too many descriptors to
reasonably search in an exhaustive manner; so we may employ the
same technique once again, p-, individual descriptor records in
file-1 may be packed into a common block, call it a. Its block
descriptor is formed by OR-ing together all of its individual
descriptors, that is D = V 0 f r a1 l D D in «» and this descriptor

a p p
together with a pointer to the block a is added as a record to a
higher level index file-2. If in searching index file-2, we find
that QG D then the block a must be accessed and Q compared with

each D D in a. But if Q^D then none of the p n -pT records
p Ot U I

subsumed by D can possibly satisfy the query and all may be safely

Ignored. Now file-2 will consist of only rn/(Pn'Pi) descriptors.
If this is too many for exhaustive search, then it too can be
blocked to form index file-3, and so on. Normally the highest
level file-d, which must be exhaustively searched for every query,
should be small enough to be core resident.

Figure 1 illustrates a small portion of a typical two level
indexed-descriptor file formed in this manner except that the
data file-0 would actually consist of much longer data records
each consisting of their actual attribute values (v-,,...,vf) and
associated data, not a record descriptor as we have shown; and
each block would be very much larger than illustrated.

The structure of indexed-descriptor files, shown in figure 1,
arose in response to a retrieval that has been informally stated
in the preceding paragraph. We can formalize the query, or
search, procedure by means of the following two procedures.

57

In
d

e
x

F
ile

-2

11
10

0
11

0
00

10
10

10
1

00
00

11
1

11
10

1
10

1
00

01
10

10
0

10
01

10
0

In
de

x
F

ile
-1

on
oo

 n
o

00
10

10
10

0
00

00
10

1
11
10
0

11
0

00
00

00
10

1
00
00
01
1

01
10

1
10

1
00
01
00
10
0

00
01
10
0

11
00

1
10

1
00
00
10
10
0

10
00

10
0

Po
rt
io
n

of
 a

tw
o

le
ve
l

in
de
xe
d

de
sc
ri
pt
or

fi
le

us

in
g

de
sc
ri
pt
or
s

of
 w

id
th
,

w
=

24
.

Fi
gu

re

1

Da
ta

Fi
le
-0

01
00

0
10

0
00

00
10

00
0

00
00

00
1

00
10

0
10

0
00

00
00

10
0

00
00

10
0

00
10
0

01
0

00
10
00
00
0

00
00

00
1

01
00

0
10
0

00
10

00
00

0
00

00
10
0

10
00
0

10
0

00
00
00
00
1

00
00

01
0

00
10

0
01
0

00
00
00
10
0

00
00
01
0

01
00

0
10

0
00

00
00

00
1

00
00

00
1

10
00
0

01
0

00
00
00
10
0

00
00

01
0

00
00

1
10

0
00
01
00
00
0

00
01
00
0

00
10

0
00
1

00
00

00
10

0
00

00
10

0

00
10

0
10
0

00
01

00
00

0
00
01
00
0

01
00
0

10
0

00
00
00
10
0

00
01
00
0

10
00
0

00
1

00
00
10
00
0

10
00
00
0

00
00
1

10
0

00
00

10
00

0
10
00
00
0

01
00

0
00

1
00
00
10
00
0

00
00

10
0

10
00
0

00
1

00
00
00
10
0

00
00

10
0

procedure query (Vn,...,v')
Given the set of q specified attribute values,
apply the transformations to form a query
descriptor with q non-zero fields.

Q «- (T.(v!j) : for specified query attributes, j};
\) \j

Exhaustively search all descriptors in the
highest level index file-d.

for each D (d) in file(d) do

if QQ D c (d) then search(e,d-l);
P

end

recursive procedure search (beta,level)

fetch block beta from storage;

[Examine all records or descriptors in this block.

if level > 0

then This is a block of descriptors in
an index file.

for each D (level) in block beta do

if QQ D D (level) then search(3,level-l p
else [This is a block of data records,

for each R in block beta do

if (v,,...,v.p) satisfies (vj,.

then add R to response set

end

How efficient is this retrieval procedure? Each call to the
procedure "search" involves the random access of a block in one of
the indexfiles l,...,d-l, or the data file-0. And the cost of such
access into secondary storage far outweighs the relatively minor
cost of sequentially examining the block in core. So we will
measure retrieval efficiency solely in terms of the expected
number of storage accesses. Let Q be any arbitrary query. The
probability that, for a given block descriptor D_, QciD0 ,

p P
(thereby requiring access to the block 6) is simply the product of
the probabilities that in each of the q specified fields of Q, the
single bit T.(v|.) matches a bit set in field-j of the descriptor D 0 ,

__ j J P
Let b.(i) denote the average (or expected) number of bits set in

J _
field-j of all descriptors in file-i. Then b.(i)/w. will denote

J J

59

the probability that field-j of Q is contained in field-j of Dp.

And TT-^n F.(i)/w. denotes the probability that QSD., where D. is
J w J J P p

an arbitrary block descriptor in file-i.

Let r(i) denote the total number of records in file-i. With the
basic probabilities given above, it is not difficult to perform a
straightforward derivation (involving simple conditional probab
ilities) that yields the following expression for the expected
number of storage accesses, given an arbitrary query Q:

E(blocks accessed|Q) = Jn r(i+l)TT F.(i+l)/w.. (1)
J e Q

Examination of expression (1) reveals that retrieval costs are
minimized when there are relatively few records in the index files
(that is, when blocking factors are relatively large); when the
density of bits in descriptor fields, b.(i+l)/w., is small (that

J J
is, fields are wide and few bits are set by the OR-ing process in
blocking); and when several attributes are specified in the query
(so that the multiplicative factor on the right decreases expon
entially). Unfortunately, these desirable characteristics are
frequently incompatible, so that crucial tradeoffs must be chosen
in the course of the file design.

Perhaps the best feeling for the significence of expression(l) can
be gained from a real example. The only large data base currently
employing indexed file retrieval has been built by Ed Cagley, and
his associates, at the Mathematics and Computation Laboratory of
the Federal Preparedness Agency to whom credit must be given for
conceiving the method. They have a dynamic file of approximately
r(0) = 1,440,000 records. These are packed with 24 records per
block, yielding r(l) = 60,000 descriptor records in index file-1.
These inturn are packed with 128 descriptors per block, so that
there are r(2) = 470 descriptor records in file-2, Since this is
reasonably core resident, the entire file has depth, d = 2,

Records in this file are characterized by seven attributes, and
most queries specify all seven. Using average observed bit
densities in fields 1 through 7 of the two index files of this
system, we find that TT,^ F,(2)/w, = ,00249 and that
TTjn F,(l)/w. = .0000544. These values serve as the right hand

J ' J J

factor in expression (1). Substituting tn all these values, we get

E(blocks accessed, or disk accesses |Q) = 4.436

which accords closely with observed behavior, Normally 3 or 4 disk

60

accesses are sufficient to retrieve a single, fully specified,
record.

Frequently, and especially in geographical information retrieval,
not all of the attributes of a record are specified in the query.
When only a subset of the possible attributes are specified,
yielding a partial match retrieval, one expects, possibly many,
records of the data file to satisfy the query criteria. If the
relative frequency of specific attributes appearing in queries can
be anticipated, then the system can be "tuned" to respond optimally
with respect to those attributes at the cost of less optimal
response to less frequently used attributes. This "tuning" can be
performed by varying the widths, w., of descriptor fields, or by

J

carefully organizing the records within blocks of the data file.
In Cagley's file, if only 3 of the 7 attributes are specified, one
can expect that from 1200 to 1500 records will satisfy the query
(regardless of which three are specified). Given the optimization
algorithm he employs, if the three most important attributes are
specified then an expected 61.8 disk accesses will retrieve all
the records. If the three least important attributes are specified
then an expected 1966.2 disk accesses will be required to retrieve
approximately the same number of records. This represents a wide
variance in expected behavior (nearly 30-fold); but this example
illustrates both the benefits that can be obtained by tuning, and
the fact that at its worst, indexed descriptor retrieval is still
quite acceptable.

At the onset, we emphasized the importance of range search queries
in geographical systems. Then for reasons of presentation we
ignored it. To implement range search capability we first require
that the transformations T., which map attribute values into

J

descriptor bit positions, be order preserving. That is, we require
T.(v) ^ T.(v') only if v $ v'~(Reasonable order preserving trans-
J J

formations are possible because the efficiency of the retrieval
process is not predicated on a uniform distribution of transformed
values, as, for example, in hash-code retrieval techniques.) Now
if a query specifies an attribute of the form v. ^ A. ^ v^, then

J J J

the bits T.(v.) and T.(v'.), and all bits inbetween, will be set
J J J J

in the query descriptor Q. Since more than one bit can be set in
any field of Q, we can no longer use the simple test, "is QQD?"
in the search procedure. Nor can we set "don't care" fields of Q
to all zeros. Instead, "don't care" fields of Q are set to all
ones; and the search test becomes "is field.(Q)A field .(D) f 0,

J J

for all J6.Q?". With this it is not hard to work out the details
of a retrieval procedure embodying range search capabilities.

61

As yet, we have been unable to combinatorially analyze the expected
behavior of range search queries. However, empirical observations
on small test files of 5,000 to 10,000 records indicate the
practicality of this retrieval mode.

62

