
INTERACTIVE COMPILATION USING GIMMS

Thomas C. Waugh 
Department of Geography 
University of Edinburgh 
Edinburgh, Scotland, U.K.

GIMMS is a general purpose, user oriented geographic 
processing system which is extensively used for the pro 
duction of medium- to high-quality thematic maps. It is 
a large integrated system and typically operates on a 
'mainframe' computer such as the IBM 370 series and 
derivatives.

The system has a wide range of options allowing great 
flexibility to the user. For example, the *TEXT command 
has over 35 user settable parameters with at least an 
other dozen accessible from within the text string to be 
drawn. With such a wide range of options (over 700 in 
the system), facilities to optimize their use must be 
provided.

One of the major problems in computer mapping is the 
design of the maps. With a line printer system it was 
not really essential to 'design' the maps since the 
output was generally so crude. However, with line 
plotter systems, the capability to produce high quality 
maps exists and the cartographic aspect is increased.

With batch oriented systems there is a significant de 
lay in the return of a plot which can vary from a few 
minutes to a few days. Inevitably mistakes are made, 
such as text overlapping other text or map symbolism. 
Thus it will take several runs to complete a design. 
In practice maps are generally not designed or are bad 
ly designed, and therefore, methods are required to 
make it easy to design a map. Interactive graphics is

264



the obvious answer.

GIMMS always could operate in batch mode or interactive 
mode, so theoretically there should be no problem in 
generating maps interactively and plotting only the 
final product on a hardcopy device. In practice it 
wasn't quite like that. Earlier versions of the system 
ran in what could be called pseudo-batch as far as 
drawing is concerned. Take, for example, the *TEXT 
command. If you draw a piece of text and it isn't 
quite right, then you should be able to change some of 
the options and try again. However, the text has al 
ready been drawn either on the graphic display or the 
plotter. A system could be developed that only drew 
the final version, but that would negate the idea of 
graphic interaction. The alternative is to provide a 
system that 'remembers' the final version of each com 
mand and then redraws all the commands at one time. 
This latter method may generate very large and compli 
cated sets of commands for a complex map. It is also 
inefficient for batch processing where the facility is 
not required. In addition, it is not necessary and may 
be counterproductive (e.g. expensive) to involve all of 
a map in the design process. For example, in the basic 
design of the layout of a map it is not necessary to 
shade polygons, and that is often the most expensive 
part of producing a map.

A decision was therefore taken in 1976 to develop an 
interactive compilation system which became subsequent 
ly the *COMPILE module of the GIMMS system. This sys 
tem is not intended to produce final maps, it Is in 
tended to produce map skeletons. A conscious decision 
was taken to exclude functions which were of limited 
use in the layout design process. In addition, it was 
felt that the production of final maps on an interactive 
graphic display was undesirable due to the low resolu 
tion of most devices and the cost of computing when 
running interactively.

The sub-system was to provide easy to use interactive 
graphic facilities to design maps using minimal comput 
er resources, and to provide a map skeleton which would 
be used (and modified) to produce final maps.

Several problems were identified and given consider 
ation in the design. First and foremost was the effect 
of running GIMMS on a multiuser mainframe. This has

265



many consequences, the most serious of which are the 
CPU available and the line speed to the users device. 
Most mainframes which provide timesharing have the 
characteristic that the CPU time available to an in 
dividual is a function of the number of users and may 
seriously constrict the use of computer graphics which 
often require a great deal of computer power. Another 
serious constriction is the line speed available to the 
user on a large multi-user system. It rarely exceeds 
1200 baud and often is as low as 300 baud. This 
effectively rules out rapid interaction using graphics 
unless intelligent terminals are being used.

An important consideration in the design is the re 
quirement for graphic display independence since it is 
not known which devices would be attached at the var 
ious installations. Therefore, the graphic interface 
is via a very basic set of graphic primitives which any 
vector plotting device can draw and in some instances 
ignore (e.g. blank a portion of the screen).

The structure identified for the sub-system was a com 
mon one, namely that of creating graphic objects, mod 
ifying them, and redrawing them as requested. The most 
useful output of the system is the set of commands 
necessary to produce the graphic objects. This set of 
commands is a skeleton of the map being produced and 
forms the design basis of a set of commands to form a 
completed map. This can reduce the design cycle from 
days to minutes, thereby increasing the likelihood of 
higher cartographic quality.

The major problem encountered was the user interface. 
The GIMMS language at that time was relatively primitive 
being a positional parameter system. For example, the 
command

*TEXT 5 9.2 0.5 45 'TEST'
would print the text TEST at position 5,9.2 with size 
0.5 cm and at 45 degrees. In fact, a size of 0.5 is 
the default size, but it had to be specified so that 
the angle (45) could be specified.

This language was not easy to use in an interactive 
mode since it often meant giving values that were not 
necessary, and it required a knowledge of all the values 
prior to one to be changed. A major lack was the cap- ' 
ability to support graphic interaction. The system 
also had no 'help' capability.

266



A new language system was thus developed. Called the 
GPIS (General Parameter Input System) it is a keyword 
oriented system with extensive facilities to read 
parameters of various types. The basic type of para 
meters are INTEGER, REAL, LABEL, STRING and the KEYWORD 
itself. In addition, REAL values may be vectors of 
values and may be set by a graphic cursor. 
The language supports both batch and interactive use as 
typified by the use of a graphic cursor. For example, 
the command

*TEXT X=5,Y=9.2,ANGLES 5,TEXT='TEST'
could be a command in a batch run or typed in at the 
terminal. If it was desired to use the graphic cursor, 
then a colon(:) is inserted into the input stream. For 
example,

*TEXT X :
would cause the graphic cursor to be displayed. After 
positioning the cursor to the required position, the 
user indicates that the point is chosen (usually press 
ing a button or typing a character). The system then 
responds with a message of the form

OPTION=X =5.23
OPTION=Y =9-12

which indicates the position selected by the user. The 
user can modify this position by reselecting the cursor 
or by typing in a new value. For example,

X=5.1 
would produce the message

OPTION=X =5.10
and the new position chosen would be 5«1 5 9.12. Thus, 
the user can explicitly set values by typing them into 
the system or by selecting the graphic cursor. This 
allows a common system for batch and interactive work.

Any real value parameter may be set to any of 4 cursor 
modes. They are :P position indicated by single

cursor position 
:D size (or distance) indicated by

giving two cursor positions 
:A angle indicated by giving two

cursor positions
:M relative shift (or movement) in 

dicated by two cursor positions
and this allows the cursor setting of several different 
types of parameter.

The system recognizes 3 types of terminator to a cursor 
action. Using the example of the Tektronix 4000 series

267



storage displays they are terminating a cursor action 
by one of three characters, the 'space', the letter 'C', 
and the letter 'A T . The 'space' bar is the normal ter 
minator and will set the appropriate parameter. The 
letter 'C' means reselect the graphic cursor for another 
point. For example, if a size parameter is to be set by 
the cursor, two points are required; therefore, the C 
code is used. For example, SIZE:

cursor appears,position,type C 
cursor reappears, position, type space 

system responds with
OPTION=SIZE =7.23 

which is the distance between the two points.

In many cases, a command will have several parameters 
able to be set by the cursor, For example, giving the 
command

*NORTHPT ?
will trigger the 'help' information for the *NORTHPT 
command which will appear in this form:

X /R,:P/
Y /R,:P/
SIZE /R,:D/
ANGLE /R,:A/

which indicates that the parameters
X and Y are of type real and may be set by cursor
positioning 

SIZE is of type real and may be set by the cursor
using two points 

ANGLE is of type real and may be set by the cursor
using two points.

These parameters may be set explicitly (e.g. X=5.2,Y=7.1 
SIZE=1.5,ANGLE=72) or may be set separately by the cur 
sor as in the example above or may be set using the 'A' 
code. This terminator sets all the possible parameters 
by invoking the cursor once and pointing at two posi 
tions. For example, *NORTHPT :

cursor appears, position at base of required north
arrow, type C 

cursor reappears, position at top of north arrow,
type A 

system responds with
OPTION=X =5.1^ 
OPTION=Y =7.21 
OPTION=SIZE =1.43 
OPTION=ANGLE =69.57

268



indicating that 'A'll the options have been set with the 
two cursor points.

The system is therefore very flexible in the manner 
which the user chooses to set parameters and does not 
require special hardware, only a capability to 'point' 
to a position and indicate one of three terminators.

The compilation system thus operates by selecting a 
command, such as *TEXT, giving the parameters, by typing 
or by cursor, drawing the text, modifying the parameters 
and redrawing if necessary, and when the required image 
has been created the option

KEEP
is specified, to which the system responds with a mes 
sage of the form

OBJECT STORED AS OBJECT 5
where the number 5 means that it is the fifth object 
stored.

Graphic objects may be drawn (*REDRAW), moved (*MOVE), 
deleted (*DELETE), stored on a file (*STORE), restored 
from a file (*RESTORE), and listed (*COMMANDS) on the 
terminal or to a file. The last command (*COMMANDS) de 
codes the objects into the commands necessary to gener 
ate the objects and which can create a text file of 
these commands, thus forming an editable skeleton of the 
map design.

An important consideration of the design of the system 
was to ensure that it would not be tied to any one dis 
play device, or size of device. This is achieved by 
using a theoretical map space in the compilation system. 
For example, the command

*NEWMAP MAP SIZE=70,60
will set up a map size of 70 cm by 60 cm. There are 
few display screens on which this can be shown at full 
size; therefore, the system will scale the map to the 
screen available. However, all specification of para 
meters is in the map image space so that specifying a 
command of

*TEXT X=5 J4.2,Y=43
would place the text at the correct place in the map 
image space. Furthermore, all cursor functions return 
values in the map image space.

Since the map space may be quite large, the ability to 
zoom into the map space is provided. The user selects a

269



box and the area within the box is expanded to fit the 
screen. The command

*ZOOM OFF 
will go back to the full map and

*ZOOM ON
will return to the last zoom area. Zooming within a 
zoomed area is allowed. Even within a zoom all para 
meters are specified in the map image space and are set 
as such by the cursor.

The system has certain useful characteristics. It does 
not consume large amounts of CPU and line time by con 
stant redraw (unless requested) and requires only a 
simple graphic display (with or without a cursor). It 
has great flexibility in input and provides a 'help' 
facility to the interactive user. The same system can 
operate in a batch mode to produce final maps requiring 
more computer resources.

Although the system requires minimum resources to oper 
ate, it has built-in capabilities to make use of more 
sophisticated hardware and intelligent terminals. For 
example, if a raster terminal or refresh terminal is 
available then the system will use selective erasure to 
delete objects before retrying them with changed para 
meters. For storage screens this function is ignored. 
The ability to change pens will be translated on some 
terminals to be a change of line type or of colour. For 
example, on the Tektronix 4014 a change of line type 
will be effected and on the 402? a change of colour.

In addition, to the use of specialised hardware, the 
system has the capability to utilise truly intelligent 
terminals. The @ character is used to pass control to 
a user specified subroutine which may insert or modify 
parameter values. For example,

*TEXT X=1,Y=5,SIZE=0.7,TEXT='TEST TEXT' @ 
would set up the appropriate parameters and then pass 
control to a user specified subroutine. An example of 
how this would be used is that the user routine would 
pass the parameters to an intelligent terminal which 
would interact with the user under local control and 
pass back modified parameters to GIMMS. This offloads 
some of the work to a local intelligent terminal.

Development is currently under way to provide an inter 
face between GIMMS and the APPLE II microcomputer to 
provide these facilities. The software in the APPLE II

270



will be written in PASCAL.

At this point a short videotape was shown.

It has transpired that the *COMPILE subsytem of GIMMS 
is a heavily used facility, not only to design maps but 
also to design diagrams of all sorts. It has met its 
design requirements of reducing the design bottleneck 
with software that uses minimal computer resources on a 
timesharing mainframe at relatively low line speeds. 
Perhaps the most important step in the development of 
the subsystem was the development of the GPIS user 
language which has proved to be an extremely powerful 
tool in its capability to support batch, interactive, 
and interactive graphics uses.

271




