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Points separated in space are ordinarily put into relation with one 
another by the Euclidean distance - measured by kilometers, miles, 
rods, cubits, or other such units. It may be meaningful in some 
situations to relate them by other quantities, such as: the time 
needed to travel between them, the number of messages passing be 
tween them, etc. Many conceptual surfaces are overlying the physi 
cal surface of the earth and we are reminded that "the role of dis 
tance as a dimension of society is to be judged not in physical 
units of length alone but rather in terms of cost distances, time 
distances and the like."-1- with proper definition, the quantifica 
tion of such relational 'distances' may be easy. However, the 
procedure for presenting the information on a map is by no means 
as straightforward as for the ordinary map distances.

.Imagine a triad of points M, N, 0 whose time-distances would satis 
fy the triangular inequality d(M,N) + d(N,O) < d(M,O). The pairs 
of points (M,N) and (N,O) are connected by a superhighway whereas 
a footpath is connecting M and O. What is the mapping of the 
points M, N, and O? Obviously, the geodesies joining the image 
points cannot be represented by straight lines on the time-surface. 
Take four points M, N, O and P whose distance d(M,N), d(M,O), 
d(M,P), d(N,O), d(N,P), and d(O,P), are equal. It is impossible to 
map those points in two dimensions such that Euclidean distances 
are all equal.^

The cartography of cultural or mental distances would raise similar 
problems. Many "non-visible" components of the geographic space 
would not be understood, however, if they were not "materialized"
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in some kind of map which would connect them to the physical and 
human aspects of the geographical environment. There are few cart 
ographic theories which deal specifically with the representation 
of distance-spaces measured in odd units such as dollars, hours, 
postal charges, frequency of telephone calls, cultural interaction 
or cognitive distances. The question is the following: can we map 
a conceptual surface in its own operational terms in order to re 
veal the potential links between its particular geometry and geog 
raphy? We assume that a two-dimensional display is the most prac 
tical solution for conveying the idea of pattern and spatial rela 
tions. 3 Within this limitation one of two types of mapping may be 
adopted.

Symbolic Representations

A cartographic symbol is overlayed on the geographical map and 
shows the distances of a conceptual space with respect to one ori 
gin or between places. Isochrone or isocost maps are examples. 
The geographic space remains invariant. The distance-space super 
imposed to the geographic area can be thought of as a volume whose 
heights are simulated by cartographic symbols.

Equidistant Representations

Imagine a map which is scale calibrated and whose graphic distances 
replicate some conceptual measure of distance such as time or cost. 
The mapping usually involves a non-Euclidean transformation of the 
geographical area. Consider a matrix of .distances among n points. 
A graphic representation of these points in two dimensions could be 
done by adopting one of the following systems:

1) Polar equidistant. Distances are preserved when measured from 
a given center-point (Fig. 1). The substantive content of such a 
map is very limited, since only one row or one column of the dis 
tance matrix is shown. In 1941 Boggs already pointed out the limi 
tations and inadequacies of polar maps: "we are interested in 
[distance] everywhere, in all directions, not only from a single 
[point]".4

2) Multipolar. Theoretically, distances are preserved between all 
points. We must find a two-dimensional configuration whose graphic 
distances approximate the n(n - l)/2 conceptual distances. The 
solution is trivial when the metric of the conceptual surface is 
Euclidean in two-space. When the distance function is unknown 
(which is usually the case) one may choose a graphic approximation 
based on the concept of crow's flight distances. The graphic con 
figuration will be inexact since the distance function implemented 
in the scaling algorithm is not identical to the distance function
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governing the conceptual surface (Fig. 2). Various non-Euclidean 
and non-metric spaces illustrate this problem.
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Figure 1 and Figure 2: A Polar Equidistant (left) and Multipolar 
(right) representations of Time-Distances in Edmonton, Alberta. 
Shading shows areas topologically fuzzy.

Non-Euclidean Space

Consider a square street map. The geographical distance d-^ (M,N) can 
be interpreted as the length of minimal path traversed by a car 
driver moving from M to N that is constrained to move only along 
line segments parallel to the directions North-South and East-West. 
Theoretically, there are an infinity of such minimal paths. Only 
limitations in the number of streets accessible reduce the choice 
of the driver who must decide only between two or three possible 
alternate routes. Geographic distances in a square street pattern 
can be calculated by using the definition of distance in the city- 
block metric:

- yn I + I xm vn- A. IT Am - X.d1 (M,N) = | X- - 3^ | + | X- - X'2 | (1)

where X designates the position of M on the first coordinate axis 
(say the East-West direction) and X designates the position of the 
same point on the second coordinate axis (the North-South direc 
tion) . Assume that the ground speed is the same all over the city. 
Hence travel time is equated to geographical distances. It is 
clearly impossible to map in two dimensions travel time according 
to the definition of Euclidean distances:
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d2 (M,N) = [(X- X) + (X- X)] (2)

since the sum of the lengths of the legs of a right triangle is al 
ways greater than the length of its hypotenuse. In order to repre 
sent travel time by Euclidean distances one is forced to add dimen 
sions to the mapping structure, since a set of distances between n 
points can always be mapped isometrically in an n-1 dimensional 
Euclidean space.5 This solution would lead to a self-defeating 
cartography, however, since one would need nl/2(n-2)l maps to por 
tray all facets of the manifold.

Non-Metric Space

A distance-space does not necessarily imply a metric space. Let 
d(M,N) be a function defined in the real plane R2 for all pairs 
(M,N). The function is called metric on the plane if it satisfies 
the following conditions:6

1) M = N -> d(M,N) = 0

2) M ^ N -> d(M,N) ± 0

3) d(M,N) = d(N,M)

4) d(M,N) + d(N,0) >_ d(M,O) (3)

Spaces which do not comply with postulate 4) are semi-metric. An 
example of semi-metric time-distance space was previously mentioned. 
Furthermore, a time-distance matrix is usually non-symmetrical with 
d(M,N) 7* d(N,M). One can think of other geographical examples 
where the metric function is "degenerated".7 Consider a cost- 
space, where distances are equated to freight charges. Should ter 
minal costs of merchandise loading and unloading be included in the 
total charge? If so the distance-space would violate the first 
postulate (M = N -> d(M,N) ^ 0). Imagine a transportation firm 
which would increase the charging cost up to a given distance, but 
would maintain a fixed total charge beyond that limit; for the 
remaining part of the trip the corresponding cost-space would con 
tradict the second postulate (M jf N -> d(M,N) = 0) .

Semi-metric or "degenerated" metric spaces are not isometrically 
mappable. Any attempt in trying to map those distance-spaces will 
yield a cartographic product which remains intrinsically fuzzy. The 
uncertainty or fuzziness of the,resulting positions leads to a 
problem in representing scales. As there is a range of angle as 
well as distance associated with each position computed, a conical 
symbol might be used to imply that the measuring-stick on the map 
is somewhat elastic in both angular orientation and length.

66



Generalizations

It is possible to associate a set of elements E with more than one 
metric function. If di and &2 are two metric functions for E, then 
(E,d-i), (E,d2) are two distinct metric spaces. In fact, there can 
be an infinite number of metric functions which can be associated 
with a given set E, as many invisible components of the geographical 
space are associated with many distinct metric functions. 8 The 
examples of metric and non-metric spaces given below can be found 
in most textbooks .

a) d(M,N) = |xm - Xn | (4) 

This is the unbounded metric space called the real line.

b) d(M,N) = I |X. - XVT> '" (5)

This is the well known family of Minkowski spaces (see Appendix) . 
These are also called lp spaces. 9 If p = 1, we have the city block 
metric; if p = 2 we return to the k-dimensional Euclidean space. 
If k = 1, the metric is not distinguishable from a) . Note the 
limit :

c) lim d(M,N) = MAX I X  - XU I (6) 
p++oo 1 £ i .1 k 1 i

named the maximum p-metric (see Appendix). However, d(M,N) is non- 
metric for p < 1 (the triangular inequality is not satisfied). 
Most researchers hesitate using the Minkowski model outside of the 
domain 1 < p <   , although there is no particular reason to believe 
that a social space must be me trie. 10

d) d(M,N) = 0 if M = N and 1 if M ^ N for all elements of E (7)

d is the standard discrete metric for E, often nicknamed the "path 
ological" example of a metric.

e) d(M,N) = Z i |X  - Xj| 2 (8)

This function is semi-metric since the triangular inequality is not 
satisfied. Statisticians avoid it, and prefer the use of the root- 
distance-squared, which is Euclidean, although this attitude implies 
an interpretation about nature which is not always warranted.

Despite differences among the names of distance measurement, all 
meanings taken on by the functions above have in common a measure 
of "how far apart" places M and N are. Earth scientists do not 
usually feel comfortable with metric functions which do not permit 
the classical analytical formulation. A connection between metric 
space and differential geometry would be advantageous to the
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cartographer, since it would unify the problems raised by the rep 
resentation of non-Euclidean spaces.

A generalization, for instance, may be attempted from the Riemann- 
ian distance and the Minkowskian metric. In Riemann geometry, dis 
tance is defined as (Einstein's conventional summation over repeat 
ed i,j):

2 i j 
ds = g  j dx dx , i, j = 1, ... k (9)

where g.. is a tensor of transformation.

A special case is the Euclidean distance which can be written, in 
tensor notation

2 i -i 
ds = 6..dx dx ;i,j=l,....k (10)

with 6.. = 1 if i = j and 6.. = 0 otherwise

Recall the geometric notation for Euclidean distance

d(M,N) = f.E, Ix  - X?! 2 ! 1/2 ' (11)

which is a special case of the Minkowskian generalization

d(M,N) = {.£ |xm - Xn | p ) 1//P (12) 

or, in tensor notation

dsP = .Idx/^dx 72 ; i, j = 1, ... k (13)

with p > 1

Combining (10) and (13), substituting q = p/2 as parameter, we get 
the expre s s ion:

ds2q = g (dx1 )*5 (dxj ) q ; i, j = 1, ... k (14)

with q > 1/2.

We have the following cases:

0) If q < 1/2, the space is non-metric.

1) If q = 1, the space is Riemannian with g,. any metric tensor
i -i -*

2) If g... = o.. . and dx , dxj are positive definite, the space is 
11 for q > 1/2.
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3) Both q = 1 and g.. = 6.. give the Euclidean space

4) If q 7* 1 and g. . ^ 6 . ., we have a more general class of space 
where Euclidean, Reimanian and Minkowskian spaces are subsets 
(Fig. 3).

Figure 3: Venn Diagram 
of Various Classes of 
Spaces.

A concern of this study is the mapping in two dimensions of var 
ious non-Euclidean and non-metric spaces. Consider a distance 
space (described by a set of observed separations) whose metric 
function is unknown. The problem is to find a mapping which app 
roximates the distance space. To our knowledge there has been no 
attempt to free the map from its age-old Euclidean scale servitude 
and to create a representation which incorporates a non-Euclidean 
scale for distance measurement. Multidimensional scaling algor 
ithms, for instance, usually proceed on the idea of crow's flight 
distances. The limitations of the Euclidean framework may be 
shown through examples.

Cartographic Experiments on Odd Geometries and Odd Metrics

The algorithm adopted in this study is based on a "trilateration" 
procedure, an iterative method suggested by Tobler and essentially 
identical to the Young-Togerson 1 s method.H An APL program was 
written to perform two tasks: 1) find a mapping which best app 
roximates a set of given distances, and 2) which has most simi 
larity to an arbitrary starting configuration. The latter trans 
formation ensures unity and comparability between various solu 
tions of the experiment. The algorithm is implemented with an 
Euclidean distance function. Results are evaluated using three 
parameters: 1) the number of iterations necessary to arrive at a 
solution, 2) the stress value of the solution configuration when
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the solution is not identical to the target (the distance space), 
and 3) the variance.and distribution of the residuals (the resid 
ual is based on the average of half the difference between the 
solution and the distance of all links involved) .-'- 2 Four types of 
situations may arise: 1) the target is two-dimensional Euclidean, 
2) the target is metric but not Euclidean in two dimensions, 3) 
the target is semi-metric, and 4) the target is metrically 
degenerated.13

1) Two-Space Euclidean

The distance space is easily recovered and solutions converge 
iteratively toward a perfect degree of fit with the target. The 
rate of convergence, however, may be affected by large deviations 
between the position of homologous points in the starting config 
uration and the target. Discrepancies in neighbourliness rela 
tionships are particularly critical and may considerably increase 
the number of iterations.

2) Not Euclidean in two dimensions

Consider the discrete space where all elements d.. are equal and 
non-zero if i ^ j and zero if i = j. The space is always mappable 
into an n-1 Euclidean manifold, where n is the number of points. 
The Euclidean mapping of five points in two dimensions was attempt 
ed for analysis of the conditions of approximation and stress (Fig. 
4a). As expected the solution configuration shows a high stress 
and a poor correlation with the target. Notice the general sym 
metry of the solution configuration and even distribution of the 
residuals symbolized by the size of the circles. A larger resid 
ual lies at the center point of the configuration, since the dis 
tance of this point to all other points of the configuration is 
the least fitted to the target.

3) Semi-Metric

In a semi-metric space the distance between one pair of points does 
not depend on the distance assigned to other pairs. Hence the tri 
angular inequality d(M,N) + d(N,0) >_d(M,O) is generally not true. 
An accurate representation of semi-metric spaces is impossible. A 
fuzzy map can be constructed, however, which best approximates the 
target space (Fig. 4b) .' The mapping of various semi-metric spaces 
was attempted showing increasing stress and fuzziness as the number 
of violations of the triangular rule increases. Stress and fuzzi 
ness also vary according to the strength of the inequality d(M,N) + 
d(N,0) < d(M,0). A single strong inequality may increase the 
stress considerably. Several strong inequalities of this type 
quickly increase the size of the residuals to a point where the
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location of the points in the solution is so fuzzy that the map is 
useless. Triangular equalization may improve the map considerably. 
For instance, we found that the stress value on a map showing fly 
ing times between eleven major cities in Canada dropped from 16% 
to 5%, after "metrizing" the space by triangular equalization (in 
this procedure, the right side of the inequality is set equal to 
the left).

4) Degenerated

The solution configuration (the map) is never identical to the tar 
get (the distance-space). A few mapping experiments were attempted 
considering the successive violations of postulates 1), 2) , and 3) 
in equation (3) (Fig. 4c and 4d). In all cases the stress is 
relatively high although only few entries of the corresponding 
distance-matrices do not fulfill the metric rule. Notice that the 
fuzziest locations in the solution configurations correspond to 
points which are the "trouble-makers" in the distance-matrices 
(for instance c and e whose distance d(c,e) = 0 and c whose dis 
tance d(e,e) ^ 0) .
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a b c e 
a 0 2 2 2
b 2 0 2 2
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Figure 4: Mapping of Various Odd Metric and Non-Metric Spaces. 

Discussion

The failure of mapping a distance space without considerable errors 
may be related to two classes of reasons: 1) the algorithm is 
not operating properly, and 2) the distance function implemented
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in the algorithm is inadequate. The first problem is "mechanical". 
For instance, we have observed that when there is a large discrep 
ancy between the distance space and the a priori starting configura 
tion, the iterative procedure of trilateration oscillates between 
two rather unsatisfactory solutions, instead of converging to a 
"best" approximation. There are a number of ways to deal with 
this. We used the simple expedient of reducing the calculated dis 
placement of each point at each step in the iteration. It should 
be emphasized that this damping procedure does not affect the con 
verged solution in any way.

The second class of problems refers to a lack of knowledge about 
nature. If the metric function is unknown, a trial and error pro 
cedure by implementing various types of distance functions into 
the algorithm may be necessary. Further, if the configuration 
solution is scaled in non-Euclidean terms (a configuration of 
points which approximates a given set of city-block distances for 
instance), the goodness of the solution depends on the orientation 
of the axis since distances are rotationally invariant in the 
Euclidean case only (Fig. 5). In the trilateration method, as 
well as in most multidimensional scaling algorithms, the solution 
is arrived at by a series of directional corrections (as well as 
distance) which must assume rotational invariance. Kruskal
briefly mentioned this problem, but it has been mostly ignored.

14

Figure 5: Variance of 
distances with respect to 
a center point for various 
values of the Minkowski 
distance exponent p. The 
axis are being rotated 
from 0 to 360 .

Conclusions and Perspectives

The mapping of conceptual spaces either not Euclidean or non-metric 
raises specific cartographic issues which should merge into a new 
body of theories. Traditional notions of scale and locational 
accuracy become meaningless when the spatial structure of a space
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cannot be represented adequately on a plane.

From a communication view point, one may wonder if a representation 
which is partly erroneous and which involves geographic distortions 
is really useful. For instance, the discontinuous view of space 
of the walker or automobilist suggests that a discontinuous map may 
be more appropriate. Time-distance may be plotted at "scale" along 
highways and streets, instead of trying to infer from observations 
along highways the metric space around them and create a continuous 
representation. On the other hand, the underlying geometry of a 
continuous map reflects a spatial process which may be desirable 
to represent. In this case the vagueness of the representation 
becomes a precious source of information since it was shown that 
fuzziness concentrates on points whose locations do not conform 
with the distance function stipulated in the map scale. One may 
also question the use of maps whose scales are specified in non- 
Euclidean terms. The visual map of a non-Euclidean space indicates 
positions only, and people intuitively might still apply the con 
cept of crow's flight distances when looking at the map pattern. 
This would lead to a misinterpretation of place separations. In 
deed, the whole concept of map pattern based on geographical var 
iance of Euclidean closeness and remoteness might need revision. 
The extent to which this new kind of maps will challenge the 
Euclidean framework of thought which presently governs map reading 
and interpretation is not foreseeable yet, but surely an assess 
ment of their practicality will be needed.
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Appendix; Limiting Distance in Minkowskian Spaces

The term "Minkowski space" here does not refer to the four dimen 
sional space used in the theory of relativity.

m n , ,m
s = Z X. (1)1=1 i '

where n is the number of coordinates in the space, and | X. | = 
| a. - b. | is the displacement between two points A and B along 
the i'th1coordinate axis. Taking the logarithm

m log s = log ( Z | X. | m )

If the longest displacement along any of the n coordinates is
| X | , then define p. = | X. | / x| <1 for all i but max.max i i max

Thus Z | X. T= I X f (1 + Z p. m ) (2) 1 i ' ' 'max i

Since lim Z p. =0, when m -> °°, (2) can be rewritten. m ->• » i

m log s = m log I X I + log (1) = log I X I1 'max " ' 'max

If the

or lim s = X m -*• oo ' 'max

smallest displacement along any of the n
I X | . then define q. = 1 X. | / | X I . > 1 1 'mm i ' i ' ' 'mm

Since
m

We know

Thus Z 1 X. | m = 1 X I 1". (1 + 1 i ' mm

lim Z q. =0, when m ->•-«>, (4) becomes
-»• -oo 1

m log s = m log X + log 
min

or lim s = 1 X 1 .m -> -°° 'mm

by definition that

Thus lim s™ = Z | X. |m = n 
m -> 0 1=1 1

(3)

coordinates is
for all i but min.

Z q^) (4)

(1) = m log 1 X 1 . 
mm

(5)

(6)

Taking the logarithm of this limit

lim (m log s) = log n = Positive constant k m -*• 0

By the definition of the logarithm (e.g. base e) :

lim s = limn elog s = lirn ek/m (7) m->0m^0 m + 0
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Giving two values, depending on whether m is approaching 0 from 
positive or negative values:

k/m ±0° i °° (+)
lim s = lim e = e = \ n (8)m .». 0 ± m ->• 0 ± I 0 (-)

Thus we have the limiting values for the distance in four cases:

s = I X I for m -> +°° 
max

00 for m -> 0

0 for m = 0

I X I . for m -> -°°
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