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1. Introduction

Region representation plays a key role in image and 
scene analysis, computer cartography, and computer 
graphics. There are a variety of approaches to repre 
senting regions, based on their boundaries or their 
"skeletons"; some of these are reviewed in the follow 
ing paragraphs. Recently, a tree representation has 
been proposed which offers a number of advantages; it 
is also described below.

We assume in what follows that a region is an arbitrary 
subset of a 2n-by-2n array, which we regard as being 
made up of unit-square "pixels". Any boundary of such 
a region can thus be specified, relative to a given 
starting point, as a sequence of unit vectors in the 
principal directions. We can represent the directions 
by numbers, e.g., let i represent 90i° (i=0,l,2,3). 
For example, the direction sequence for the boundary 
of the region in Figure la, moving clockwise starting 
from the left-most of the upper-most border points, is

0 3 O 2 3 5 2 3 1 2 3 3 0 3 2 5 I 6 0 1 0 1 0 3 0 1 0 1.

This type of boundary representation is called a chain 
code. Generalized chain codes, involving more than 
four directions, can also be used. Chain codes provide 
a very compact region representation, and make it easy 
to detect features of the region boundary, such as 
sharp turns ("corners") or concavities. On the other
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hand, it is harder to determine properties such as elon- 
gatedness from a chain code, and it is also difficult 
to perform operations such as union and intersection on 
regions represented by chain codes. A general introduc 
tion to chain codes and their uses can be found in [1].

Another class of region representations involves various 
types of maximal "blocks" that are contained in a given 
region. For example, we can represent a region R as 
a linked list of the runs (of pixels) in which R meets 
the successive rows of the array [2]. Here each "block" 
is a 1-by-m rectangle, where m is the run length; the 
runs are the largest such blocks that R contains, and 
R is determined by specifying the initial points (or 
centers) and lengths of the runs. Alternatively, we 
can represent R by the set of maximal square blocks
(or blocks of any other desired shape) that it contains; 
here R is determined by specifying the centers and 
radii of these blocks. This representation is called 
the medial axis transformation, or MAT [3]. It is some 
what less compact than chain code [4], but it has advan 
tages with respect to performing union and intersection 
operations or detecting properties such as elongatedness
(in terms of the smallness of the radii relative to the 
number of centers) .

There has been recent interest in an approach to region 
representation based on successive subdivision of the 
array into quadrants. If the region does not cover the 
entire array, we subdivide the array, and repeat this 
process for each quadrant, each subquadrant,... as 
long as necessary, until we obtain blocks ( possibly 
single pixels) that are entirely contained in the re 
gion or entirely disjoint from it. The resulting 
blocks for the region of Figure la are shown in Figure 
Ib. This process can be represented by a tree of de 
gree 4 (for brevity: a quadtree) in which the entire 
array is the root node, the four sons of a node are its 
quadrants, and the leaf nodes correspond to those blocks 
for which no further subdivision is necessary.* The 
quadtree representation for Figure Ib is shown in Fi 
gure Ic. Note that here again we are representing the 
region as a union of maximal blocks, but this time the
blocks must have standard sizes and positions (powers 
_
The quadtree region representation described here 
should not be confused with the quadtree representation 
of two-dimensional point data introduced by Finkel 
and Bentley [5].
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of 2). Since the array was assumed to be 2n-by-2n , 
the tree height is at most n. This method of region 
representation was proposed by Klinger [6-8]; it has 
also been studied extensively by Hunter and Steiglitz 
[9-11]. It is relatively compact, and is also well 
suited to operations such as union and intersection, 
and to detecting various region properties.

This paper informally describes a collection of algo 
rithms for converting between quadtree and other repre 
sentations, and for measuring geometric properties of 
regions represented by quadtrees. Detailed descrip 
tions of the algorithms can be, found in a series of 
papers by Samet et al. [12-20].

2. Conversion

2.1 Quadtrees and arrays

In Section 1 we described a method of constructing the 
quadtree corresponding to a given region by recursively 
subdividing the picture into blocks which are quadrants, 
subquadrants,... . We assume that the region is repre 
sented by a binary array, with region points having 
value 1 and nonregion points, value 0. If a block 
consists entirely of 1's or O's, it corresponds to 
a "black" or "white" leaf node in the tree; otherwise, 
it corresponds to a "gray" nonleaf node, which has 
four sons corresponding to its four quadrants. If we 
do this in a "top-down" fashion, i.e., first examine 
the entire picture, then its quadrants, then their 
quadrants, etc. as needed, it may require excessive 
computational effort, since parts of the picture that 
contain finely divided mixtures of O's and 1's will 
be examined repeatedly.

As an alternative, we can build the quadtree "bottom-up" 
by scanning the picture in a suitable order, e.g., in 
the sequence

1 2 5 6 17 18 21 22
3 4 7 8 19 20 23 24

9 10 13 14 25 26 29 30

11 12 15 16 27 28 31 32
33...

where the numbers indicate the order in which the points 
are examined. As we discover maximal blocks of O's or
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of 1's, we add leaf nodes to the tree, together with 
their needed ancestor gray nodes. This can be done in 
such a way that leaf nodes are never created until 
they are known to be maximal, so that it is never ne 
cessary to merge four leaves of the same color and 
change their common parent node from gray to black or 
white. For the details of this algorithm see [17].

Bottom-up quadtree construction becomes somewhat more 
complicated if we want to scan the picture row by row. 
Here we add leaf nodes to the tree as we discover 
maximal 1-by-l or 2-by-2 blocks of O's or 1's; if 
four leaves with a common father all have the same 
color, they are merged. The details can be found in 
[16].

Given a quadtree, we can construct the corresponding 
binary picture by scanning the tree and, for each leaf, 
creating a block of O's or 1's of the appropriate 
size in the appropriate position. A more complicated 
process can be used if we want to create the picture 
row by row. Here we must visit each quadtree node 
once for each row that intersects it (i.e., a node 
corresponding to a 2k by 2k block is visited 2^ times) 
and, for each leaf, output a run of O's or 1's of 
the appropriate length (2^) in the appropriate position. 
For the details, see [18].

2.2 Quadtrees and borders

In order to determine, for a given leaf node M of a 
quadtree, whether the corresponding block is on a bor 
der, we must visit the leaf nodes that correspond to 
4-adjacent blocks and check whether they are black or 
white. To find the nodes corresponding to, e.g., 
right-hand neighbor blocks, we move upward from M in 
the tree until we reach some ancestor node from its 
northwest or southwest son. (If we reach the root node 
before this happens, M is on the east edge of the 
picture and has no right-hand neighbor blocks.) As soon 
as this occurs, we go back down the tree making the mir 
ror images of the moves made on the way up—i.e., the 
first move down is to the northeast or southeast son, 
and the following moves are to northwest or southwest 
sons. If a leaf node is reached by the time we come to 
the end of this move sequence, its block is at least as 
large as M's block, and so is M's sole right-hand 
neighbor. Otherwise, the nonleaf node reached at the
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end of the sequence is the root of a subtree whose 
leftmost leaf nodes correspond to M's right-hand 
neighbors, and we can find these nodes by traversing 
that subtree.

Let M,N be black and white leaf nodes whose blocks 
are 4-adjacent. Thus the pair M f N defines a common 
border segment of length 2k (the smaller of the side 
lengths of M and N) which ends at a corner of M 
or of N (or both). To determine the next segment 
along this border, we must find the other leaf P 
whose block touches the end of this segment: *

M

If the segment ends at a corner of both M and N, we 
must find the other two leaves P,Q whose blocks meet 
at that'corner:

M
N

This can be done by an ascending and descending proce 
dure similar to that described in the preceding para 
graph; see [12] for the details. The next border seg 
ment is then the common border defined by M and P 
if P is white, or by N and P if P is black. 
(In the common corner case, the pair of blocks defining 
the next border segment is determined exactly as in the 
standard "crack following" algorithm for traversing 
region borders.) This process is repeated until we 
come to M,N again, at which stage the entire border 
has been traversed. The successive border segments 
constitute a 4-direction chain code, broken up into 
pieces whose lengths are powers of 2. The time re 
quired for this process is on the order of the number 
of border nodes times the tree height.

Using the methods described in the last two paragraphs, 
we can traverse the quadtree, find all borders, and 
generate their codes. We should mark each border as
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we follow it, so that we will not follow it again from 
another starting point; note that the marking process 
is complicated by the fact that a node's block may be 
on many different borders.

To generate a quadtree from a set of 4-direction chain 
codes, we first traverse each code and create pairs of 
leaf nodes having the given border segments, together 
with the necessary nonleaf nodes. We then generate 
leaf (and nonleaf) nodes corresponding to the interior 
blocks. At any stage, if four leaves with a common 
father all have the same color, they are merged. The 
details of this algorithm will not be given here; see 
[13]. The time required is on the order of the peri 
meter (=total 4-direction chain code length) times tree 
height.

2.3 Quadtrees of derived sets

Let S be_ the set of 1's in a given binary array, 
and let S be the complement of S. The quadtree of 
S is the same as that of S, with black leaf nodes 
changed to white and vice versa. To get the quadtree 
of SUT from those of S and T, we traverse the two 
trees simultaneously. Where they agree, the new tree 
is the same. If S has a gray (=nonleaf) node where 
T has a black node, the new tree gets a black node; 
if T has a white node there, we copy the subtree of 
S at that gray node into the new tree; if S has a 
white node and T a black node, the new tree gets a 
black node. The algorithm for SPIT is exactly analo 
gous, with the roles of black and white reversed. The 
time required for these algorithms is proportional to 
the number of nodes in the smaller of the two trees 
[20].

3. Property Measurement

3.1 Connected component labeling

Given a binary array represented by a quadtree, we can 
label its components by traversing the tree in a stan 
dard order, say, NW, NE, SW, SE. Whenever we come to 
a black leaf node, we visit the leaf nodes whose blocks 
adjoin M's block on its south and east sides (and-at 
its southeast corner, if we are labeling 8-components); 
see Section 2.2 on how to find these nodes. If we find 
unlabeled black leaf nodes, we give them the same label
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as M; if we find black leaf nodes that already have 
labels, we note that their labels are equivalent. When 
the traversal is complete, we sort out the equivalences, 
retraverse the tree, and give the black leaf nodes 
their final labels. The time required is on the order 
of the number of nodes in the tree times the tree 
height. Alternatively, it is on the order of Q log Q, 
where Q is the number of leaf nodes in the tree. For 
the details of this algorithm, see [15].

3.2 Component counting and genus computation

Once the connected components have been labeled, it is 
trivial to count them, since their number is the same 
as the number of inequivalent labels. We will next 
describe a method of determining the number of compon 
ents minus the number of holes by counting certain 
types of local patterns in the array; this number g 
is known as the genus or Euler number of the array.

Let V be the number of 1's, E the number of 11's 
and i's, and F the number of ij"' s in tne array; it 
is well known [21] that the g=V-E+F. This result can 
be generalized to the case where the array is represen 
ted by a quadtree [19]. In fact, let V be the number 
of black leaf nodes; E the number of pairs of such 
nodes whose blocks are horizontally or vertically adja 
cent; and F the number of triples or quadruples of 
such nodes whose blocks meet at and surround a common 
point, e.g.,

or

Then g=V-E+F. These adjacencies can be found (see 
Section 2.2) by traversing the tree; the time required 
is on the order of the number of nodes in the tree times 
the tree height, or of Q log Q, as before.

3.3 Area and moments

The area of a region represented by a quadtree can be 
obtained by summing the areas of the black leaf nodes, 
i.e., counting 4n for each such node that represents
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a 2n by 2 block. Similarly, the first x and y 
moments of the region relative to a given origin can 
be computed by summing the first moments of these 
blocks; note that we know the position (and size) of 
each block from the position of its leaf in the tree. 
Knowing the area and the first moments gives us the 
coordinates of the centroid, and we can then compute 
central moments relative to the centroid as origin. 
The time required for any of these computations is 
essentially proportional to the number of nodes in the 
tree. Further details on moment computation from quad 
trees can be found in [20].

3.4 Perimeter

The perimeter of a region represented by a quadtree can 
be obtained by traversing all the borders of the region 
(Section 2.2) and summing the numbers of steps in the 
resulting codes. Alternatively, it can be computed by 
traversing the tree, and for each leaf node, checking 
the colors of the nodes whose blocks are adjacent to 
its block on two sides, say, bottom and right, to 
determine which of these adjacencies contributes to 
the total perimeter. The time required for this is 
proportional to the number of leaf nodes; see [14] for 
the details.

4. Concluding Remarks

Quadtrees constitute an interesting alternative to the 
standard methods of digitally representing regions. 
Their chief disadvantage is that they are not shift- 
invariant; two regions differing only by a translation 
may have quite different quadtrees. Thus shape matching 
from quadtrees is not straightforward. In other 
respects, however, they have many potential advantages. 
They provide a compact and easily constructed represen 
tation from which standard region properties can be 
efficiently computed. In effect, they are "variable- 
resolution arrays" in which detail is represented only 
when it is available, without leading to excessive 
storage requirements for parts where detail is lacking. 
Hopefully, this paper has drawn attention to the advan 
tages of quadtrees as data structures for possible use 
in digital cartographic information systems.
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a. Region. b. Block decomposition 
of the region in (a)

12 13 18 19 14 15 20 21 6 79 10 26 27 31 32 28 29 33 34 3536 38 39

c. Quadtree representation of the blocks in (b).
Figure 1. A region, its maximal blocks, and the corre 

sponding quadtree. Blocks in the region are 
shaded, background blocks are blank.
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