
TREE STRUCTURES FOR REGION REPRESENTATION

Azriel Rosenfeld and Hanan Samet
Computer Vision Laboratory

University of Maryland
College Park, MD 20742

1. Introduction

Region representation plays a key role in image and
scene analysis, computer cartography, and computer
graphics. There are a variety of approaches to repre
senting regions, based on their boundaries or their
"skeletons"; some of these are reviewed in the follow
ing paragraphs. Recently, a tree representation has
been proposed which offers a number of advantages; it
is also described below.

We assume in what follows that a region is an arbitrary
subset of a 2n-by-2n array, which we regard as being
made up of unit-square "pixels". Any boundary of such
a region can thus be specified, relative to a given
starting point, as a sequence of unit vectors in the
principal directions. We can represent the directions
by numbers, e.g., let i represent 90i° (i=0,l,2,3).
For example, the direction sequence for the boundary
of the region in Figure la, moving clockwise starting
from the left-most of the upper-most border points, is

0 3 O 2 3 5 2 3 1 2 3 3 0 3 2 5 I 6 0 1 0 1 0 3 0 1 0 1.

This type of boundary representation is called a chain
code. Generalized chain codes, involving more than
four directions, can also be used. Chain codes provide
a very compact region representation, and make it easy
to detect features of the region boundary, such as
sharp turns ("corners") or concavities. On the other

108

hand, it is harder to determine properties such as elon-
gatedness from a chain code, and it is also difficult
to perform operations such as union and intersection on
regions represented by chain codes. A general introduc
tion to chain codes and their uses can be found in [1].

Another class of region representations involves various
types of maximal "blocks" that are contained in a given
region. For example, we can represent a region R as
a linked list of the runs (of pixels) in which R meets
the successive rows of the array [2]. Here each "block"
is a 1-by-m rectangle, where m is the run length; the
runs are the largest such blocks that R contains, and
R is determined by specifying the initial points (or
centers) and lengths of the runs. Alternatively, we
can represent R by the set of maximal square blocks
(or blocks of any other desired shape) that it contains;
here R is determined by specifying the centers and
radii of these blocks. This representation is called
the medial axis transformation, or MAT [3]. It is some
what less compact than chain code [4], but it has advan
tages with respect to performing union and intersection
operations or detecting properties such as elongatedness
(in terms of the smallness of the radii relative to the
number of centers) .

There has been recent interest in an approach to region
representation based on successive subdivision of the
array into quadrants. If the region does not cover the
entire array, we subdivide the array, and repeat this
process for each quadrant, each subquadrant,... as
long as necessary, until we obtain blocks (possibly
single pixels) that are entirely contained in the re
gion or entirely disjoint from it. The resulting
blocks for the region of Figure la are shown in Figure
Ib. This process can be represented by a tree of de
gree 4 (for brevity: a quadtree) in which the entire
array is the root node, the four sons of a node are its
quadrants, and the leaf nodes correspond to those blocks
for which no further subdivision is necessary.* The
quadtree representation for Figure Ib is shown in Fi
gure Ic. Note that here again we are representing the
region as a union of maximal blocks, but this time the
blocks must have standard sizes and positions (powers
_
The quadtree region representation described here
should not be confused with the quadtree representation
of two-dimensional point data introduced by Finkel
and Bentley [5].

109

of 2). Since the array was assumed to be 2n-by-2n ,
the tree height is at most n. This method of region
representation was proposed by Klinger [6-8]; it has
also been studied extensively by Hunter and Steiglitz
[9-11]. It is relatively compact, and is also well
suited to operations such as union and intersection,
and to detecting various region properties.

This paper informally describes a collection of algo
rithms for converting between quadtree and other repre
sentations, and for measuring geometric properties of
regions represented by quadtrees. Detailed descrip
tions of the algorithms can be, found in a series of
papers by Samet et al. [12-20].

2. Conversion

2.1 Quadtrees and arrays

In Section 1 we described a method of constructing the
quadtree corresponding to a given region by recursively
subdividing the picture into blocks which are quadrants,
subquadrants,... . We assume that the region is repre
sented by a binary array, with region points having
value 1 and nonregion points, value 0. If a block
consists entirely of 1's or O's, it corresponds to
a "black" or "white" leaf node in the tree; otherwise,
it corresponds to a "gray" nonleaf node, which has
four sons corresponding to its four quadrants. If we
do this in a "top-down" fashion, i.e., first examine
the entire picture, then its quadrants, then their
quadrants, etc. as needed, it may require excessive
computational effort, since parts of the picture that
contain finely divided mixtures of O's and 1's will
be examined repeatedly.

As an alternative, we can build the quadtree "bottom-up"
by scanning the picture in a suitable order, e.g., in
the sequence

1 2 5 6 17 18 21 22
3 4 7 8 19 20 23 24

9 10 13 14 25 26 29 30

11 12 15 16 27 28 31 32
33...

where the numbers indicate the order in which the points
are examined. As we discover maximal blocks of O's or

110

of 1's, we add leaf nodes to the tree, together with
their needed ancestor gray nodes. This can be done in
such a way that leaf nodes are never created until
they are known to be maximal, so that it is never ne
cessary to merge four leaves of the same color and
change their common parent node from gray to black or
white. For the details of this algorithm see [17].

Bottom-up quadtree construction becomes somewhat more
complicated if we want to scan the picture row by row.
Here we add leaf nodes to the tree as we discover
maximal 1-by-l or 2-by-2 blocks of O's or 1's; if
four leaves with a common father all have the same
color, they are merged. The details can be found in
[16].

Given a quadtree, we can construct the corresponding
binary picture by scanning the tree and, for each leaf,
creating a block of O's or 1's of the appropriate
size in the appropriate position. A more complicated
process can be used if we want to create the picture
row by row. Here we must visit each quadtree node
once for each row that intersects it (i.e., a node
corresponding to a 2k by 2k block is visited 2^ times)
and, for each leaf, output a run of O's or 1's of
the appropriate length (2^) in the appropriate position.
For the details, see [18].

2.2 Quadtrees and borders

In order to determine, for a given leaf node M of a
quadtree, whether the corresponding block is on a bor
der, we must visit the leaf nodes that correspond to
4-adjacent blocks and check whether they are black or
white. To find the nodes corresponding to, e.g.,
right-hand neighbor blocks, we move upward from M in
the tree until we reach some ancestor node from its
northwest or southwest son. (If we reach the root node
before this happens, M is on the east edge of the
picture and has no right-hand neighbor blocks.) As soon
as this occurs, we go back down the tree making the mir
ror images of the moves made on the way up—i.e., the
first move down is to the northeast or southeast son,
and the following moves are to northwest or southwest
sons. If a leaf node is reached by the time we come to
the end of this move sequence, its block is at least as
large as M's block, and so is M's sole right-hand
neighbor. Otherwise, the nonleaf node reached at the

111

end of the sequence is the root of a subtree whose
leftmost leaf nodes correspond to M's right-hand
neighbors, and we can find these nodes by traversing
that subtree.

Let M,N be black and white leaf nodes whose blocks
are 4-adjacent. Thus the pair M f N defines a common
border segment of length 2k (the smaller of the side
lengths of M and N) which ends at a corner of M
or of N (or both). To determine the next segment
along this border, we must find the other leaf P
whose block touches the end of this segment: *

M

If the segment ends at a corner of both M and N, we
must find the other two leaves P,Q whose blocks meet
at that'corner:

M
N

This can be done by an ascending and descending proce
dure similar to that described in the preceding para
graph; see [12] for the details. The next border seg
ment is then the common border defined by M and P
if P is white, or by N and P if P is black.
(In the common corner case, the pair of blocks defining
the next border segment is determined exactly as in the
standard "crack following" algorithm for traversing
region borders.) This process is repeated until we
come to M,N again, at which stage the entire border
has been traversed. The successive border segments
constitute a 4-direction chain code, broken up into
pieces whose lengths are powers of 2. The time re
quired for this process is on the order of the number
of border nodes times the tree height.

Using the methods described in the last two paragraphs,
we can traverse the quadtree, find all borders, and
generate their codes. We should mark each border as

112

we follow it, so that we will not follow it again from
another starting point; note that the marking process
is complicated by the fact that a node's block may be
on many different borders.

To generate a quadtree from a set of 4-direction chain
codes, we first traverse each code and create pairs of
leaf nodes having the given border segments, together
with the necessary nonleaf nodes. We then generate
leaf (and nonleaf) nodes corresponding to the interior
blocks. At any stage, if four leaves with a common
father all have the same color, they are merged. The
details of this algorithm will not be given here; see
[13]. The time required is on the order of the peri
meter (=total 4-direction chain code length) times tree
height.

2.3 Quadtrees of derived sets

Let S be_ the set of 1's in a given binary array,
and let S be the complement of S. The quadtree of
S is the same as that of S, with black leaf nodes
changed to white and vice versa. To get the quadtree
of SUT from those of S and T, we traverse the two
trees simultaneously. Where they agree, the new tree
is the same. If S has a gray (=nonleaf) node where
T has a black node, the new tree gets a black node;
if T has a white node there, we copy the subtree of
S at that gray node into the new tree; if S has a
white node and T a black node, the new tree gets a
black node. The algorithm for SPIT is exactly analo
gous, with the roles of black and white reversed. The
time required for these algorithms is proportional to
the number of nodes in the smaller of the two trees
[20].

3. Property Measurement

3.1 Connected component labeling

Given a binary array represented by a quadtree, we can
label its components by traversing the tree in a stan
dard order, say, NW, NE, SW, SE. Whenever we come to
a black leaf node, we visit the leaf nodes whose blocks
adjoin M's block on its south and east sides (and-at
its southeast corner, if we are labeling 8-components);
see Section 2.2 on how to find these nodes. If we find
unlabeled black leaf nodes, we give them the same label

113

as M; if we find black leaf nodes that already have
labels, we note that their labels are equivalent. When
the traversal is complete, we sort out the equivalences,
retraverse the tree, and give the black leaf nodes
their final labels. The time required is on the order
of the number of nodes in the tree times the tree
height. Alternatively, it is on the order of Q log Q,
where Q is the number of leaf nodes in the tree. For
the details of this algorithm, see [15].

3.2 Component counting and genus computation

Once the connected components have been labeled, it is
trivial to count them, since their number is the same
as the number of inequivalent labels. We will next
describe a method of determining the number of compon
ents minus the number of holes by counting certain
types of local patterns in the array; this number g
is known as the genus or Euler number of the array.

Let V be the number of 1's, E the number of 11's
and i's, and F the number of ij"' s in tne array; it
is well known [21] that the g=V-E+F. This result can
be generalized to the case where the array is represen
ted by a quadtree [19]. In fact, let V be the number
of black leaf nodes; E the number of pairs of such
nodes whose blocks are horizontally or vertically adja
cent; and F the number of triples or quadruples of
such nodes whose blocks meet at and surround a common
point, e.g.,

or

Then g=V-E+F. These adjacencies can be found (see
Section 2.2) by traversing the tree; the time required
is on the order of the number of nodes in the tree times
the tree height, or of Q log Q, as before.

3.3 Area and moments

The area of a region represented by a quadtree can be
obtained by summing the areas of the black leaf nodes,
i.e., counting 4n for each such node that represents

114

a 2n by 2 block. Similarly, the first x and y
moments of the region relative to a given origin can
be computed by summing the first moments of these
blocks; note that we know the position (and size) of
each block from the position of its leaf in the tree.
Knowing the area and the first moments gives us the
coordinates of the centroid, and we can then compute
central moments relative to the centroid as origin.
The time required for any of these computations is
essentially proportional to the number of nodes in the
tree. Further details on moment computation from quad
trees can be found in [20].

3.4 Perimeter

The perimeter of a region represented by a quadtree can
be obtained by traversing all the borders of the region
(Section 2.2) and summing the numbers of steps in the
resulting codes. Alternatively, it can be computed by
traversing the tree, and for each leaf node, checking
the colors of the nodes whose blocks are adjacent to
its block on two sides, say, bottom and right, to
determine which of these adjacencies contributes to
the total perimeter. The time required for this is
proportional to the number of leaf nodes; see [14] for
the details.

4. Concluding Remarks

Quadtrees constitute an interesting alternative to the
standard methods of digitally representing regions.
Their chief disadvantage is that they are not shift-
invariant; two regions differing only by a translation
may have quite different quadtrees. Thus shape matching
from quadtrees is not straightforward. In other
respects, however, they have many potential advantages.
They provide a compact and easily constructed represen
tation from which standard region properties can be
efficiently computed. In effect, they are "variable-
resolution arrays" in which detail is represented only
when it is available, without leading to excessive
storage requirements for parts where detail is lacking.
Hopefully, this paper has drawn attention to the advan
tages of quadtrees as data structures for possible use
in digital cartographic information systems.

115

References

1. H. Freeman, Computer processing of line-drawing
images, Computing Surveys 6, 1974, 57-97.

2. D. Rutovitz, Data structures for operations on
digital images, in G. C. Cheng et al. r eds.,
Pictorial Pattern Recognition, Thompson Book Co.,
Washington, DC, 1968, 105-133.

3. H. Blum, A transformation for extracting new de
scriptors of shape, in W. Wathen-Dunn, ed., Models
for the Perception of Speech and Visual Form, MIT
Press, Cambridge, MA, 1967, 362-380.

4. J. L. Pfaltz and A. Rosenfeld, Computer represen
tation of planar regions by their skeletons, Comm.
ACM 10, 1967, 119-122, 125.

5. R. A. Finkel and J. L. Bentley, Quadtrees: a
data structure for retrieval on composite keys,
Acta Informatica 4, 1974, 1-9.

6. A. Klinger, Data structures and pattern recogni
tion, Proc. 1st Intl. Joint Conf. on Pattern Recog
nition, 1973, 497-498.

7. A. Klinger and C. R. Dyer, Experiments in picture
representation using regular decomposition, Com
puter Graphics Image Processing 5, 1976, 68-105.

8. N. Alexandridis and A. Klinger, Picture decomposi
tion, tree data-structures, and identifying direc
tional symmetries as node combinations, ibid. 8, 1978, 43-77. ——————

9. G. M. Hunter, Efficient computation and data struc
tures for graphics, Ph.D. dissertation, Dept. of
Electrical Engineering and Computer Science,
Princeton University, Princeton, NJ, 1978.

10. G. M. Hunter and K. Steiglitz, Operations on images
using quad trees, IEEETPAMI-1, 1979, 145-153.

11. G. M. Hunter and K. Steiglitz, Linear transforma
tions of pictures represented by quad trees, Com
puter Graphics Image Processing 10, 1979, 289-296.

116

12. C. R. Dyer, A. Rosenfeld, and H. Samet, Region
representation: boundary codes from quadtrees,
Computer Science Center TR-732, University of
Maryland, College Park, MD, February 1979.

13. H. Samet, Region representation: quadtrees from
boundary codes, Computer Science Center TR-741,
University of Maryland, College Park, MD, March
1979.

14. H. Samet, Computing perimeters of images represen
ted by quadtrees, Computer Science Center TR-755,
University of Maryland, College Park, MD, April
1979.

15. H. Samet, Connected component labeling using quad
trees, Computer Science Center TR-756, University
of Maryland, College Park, MD, April 1979.

16. H. Samet, Region representation: raster-to-
quadtree conversion, Computer Science Center TR-
766, University of Maryland, College Park, MD,
May 1979.

17. H. Samet, Region representation: quadtrees from
binary arrays, Computer Science Center TR-767,
University of Maryland, College Park, MD, May 1979.

18. H. Samet, Region representation: quadtree-to-
raster conversion, Computer Science Center TR-768,
University of Maryland, College Park, MD, June
1979.

19. C. R. Dyer, Computing the Euler number of an image
from its quadtree, Computer Science Center TR-769,
University of Maryland, College Park, MD, May 1979.

20. M. Shneier, Linear time calculations of geometric
properties using quadtrees, Computer Science Center
TR-770, University of Maryland, College Park, MD,
May 1979.

21. A. Rosenfeld and A. C. Kak, Digital Picture Pro
cessing, Academic Press, New York, 1976.

117

a. Region. b. Block decomposition
of the region in (a)

12 13 18 19 14 15 20 21 6 79 10 26 27 31 32 28 29 33 34 3536 38 39

c. Quadtree representation of the blocks in (b).
Figure 1. A region, its maximal blocks, and the corre

sponding quadtree. Blocks in the region are
shaded, background blocks are blank.

118

