
A DATA STRUCTURE FOR A 
SPATIAL INFORMATION SYSTEM

Robert M. Haralick
Department of Electrical Engineering 

Department of Computer Science 
Virginia Polytechnic Institute

and State University 
Blacksburg, Virginia 24061

and
Linda G. Shapiro 

Department of Computer Science 
Virginia Polytechnic Institute

and State University 
Blacksburg, Virginia 24061

I. Introduction

We consider maps to be a visual representation of 
spatial data. We call the formal organizational 
structure by which we may represent spatial data in the 
computer a spatial data structure. In this paper we 
give a definition of spatial data structure and some 
examples illustrating its use in raster format data, in 
vector format data, and in procedures which do 
inferential reasoning with spatial data. The structure 
is rich, flexible, and efficient enough to logically 
store any of the spatial information in maps, line 
drawings, region adjacency graphs, and other geographic 
entities that we might desire to represent.

II. A Spatial Data Structure

An atom is a unit of data that will not be further 
broken down. Integers and character strings are common

291



examples of atoms. An attribute-value table A/V is a 
set of pairs A/V = {(a,v) I a is an attribute and v is 
the value associated with attribute a}. Both a and v 
may be atoms or more complex structures. For example, 
in an attribute-value table associated with a structure 
representing a person, the attribute AGE would have a 
numeric value, and the attribute MOTHER might have as 
its value a structure representing another person.

A spatial data structure D is a set D = {Rl,...,RK} 
of relations. Each relation Rk has a dimension Nk and 
a sequence of domain sets S(l,k),...,S(Nk,k). That is 
for each k = 1,...,K, Rk c S(l,k) X ... X S(Nk,k). 
The elements of the domain sets may be atoms or spatial 
data structures. Since the spatial data structure is 
defined in terms of relations whose elements may 
themselves be spatial data structures, we call it a 
recursive structure. This indicates 1) that the 
spatial data structure is defined with a recursive 
definition (and not that the information stored in it 
is infinitely recursive), and 2) that it will often be 
possible to describe operations on the structure by 
simple recursive algorithms.

A spatial data structure represents a geographic 
entity. The entity might be as simple as a point or as 
complex as a whole map. An entity has global 
properties, component parts, and related geographic 
entities. Each spatial data structure will have one 
distinguished binary relation containing the global 
properties of the entity that the structure represents. 
The distinguished relation is an attribute-value table 
and will generally be referred to as the A/V relation. 
When a geographic entity is made up of parts, we may 
need to know how the parts are organized. Or, we may 
wish to store a list of other geographic entities that 
are in a particular relation to the one we are 
describing. Such a list is just a unary relation, and 
the interrelationships among parts are n-ary relations.

For example, we may represent the state of Virginia by 
a spatial data structure. In this case, the A/V 
relation would contain global attributes of the state 
such as population, area, boundary, major crop, and so 
on. The values of most of these attributes 
(population, area, major crop) are atoms. The value of 
the boundary attribute is a spatial data structure 
defining the boundary.

292



One obvious division of the state is into counties. A 
list of counties could be included as one of the 
relations, or it might be more valuable to store the 
counties in a region adjacency relation/ a binary 
relation associating each region (county) with every 
other region (county) that neighbors it. Counties, of 
course, would also be represented by spatial data 
structures.

Some other geographic entities that are related to a 
state are its highways, railroads, lakes, rivers, and 
mountains. Some of these entities will be wholly 
contained in the state and others will cross its 
boundaries. One way to represent this phenomenon is to 
use a binary relation where the first element of each 
pair is a geographic entity, and the second element is 
a code indicating whether the entity is wholly 
contained in the state. The spatial data structures 
representing the geographic entities themselves would 
contain more specific information about their, 
locations. Figure 1 illustrates a simplified spatial 
data structure containing an attribute-value table, a 
county adjacency relation, and a lakes relation for the 
state of Virginia.

Comparison to Other Geographic Data Structures

The spatial data structure defined in this paper can 
easily store the spatial data used in well known vector 
based spatial systems such as the Canada Geographic 
Information System (Tomlinson, 1967), the U.S. Census 
DIME files (Cooke and Maxfield, 1967), and POLYVRT 
(Harvard Laboratory for Computer Graphics and Spatial 
Analysis, 1974). We illustrate this by defining a 
system with similar characteristics. In our system, a 
point is an atom consisting of an ordered pair (X,Y) 
where X represents latitude and Y longitude. A 
chain C is a spatial data structure C = {A/VC, LP}. 
LP is an ordered list (unary relation) of points that 
define the chain. The attribute-value table A/VC of a 
chain contains the attributes LEFT_POLYGON, 
RIGHT_POLYGON, NEXT_CHAIN_LEFT, and NEXT_CHAIN_RIGHT 
whose values correspond to the pointers in Tomlinson, 1 s 
system. The attribute-value table can also contain 
such global information as the length of the chain or a 
function to be used to interpolate between the points.

293



VIRGINIA
attribute val Lie

A/V
COUNTY ADJACENCY
LAKES

(LAKE ANNA)

(BUGGS I, LAKE)

(LEESVILLE LAKE)
•

INSIDE

CROSSES 
BOUNDARY

INSIDE

•

POPULATION
AREA
BOUNDARY
MAJOR CROP

4,648,494
40,815 so MI

(VIRGINIA BOUNDARY)
TOBACCO

(MONTGOMERY)

(MONTGOMERY)

(GILES)

• 
•

(ROANOKE)

(GILES)

(CRAIG)

•

Figure 1 illustrates a spatial data structure 
representing the state of Virginia. The A/V relation 
is an attribute-value table. The COUNTY ADJACENCY 
relation contains pairs of adjacent counties. The 
LAKES relation contains pairs consisting of a lake and 
an indication of whether it lies inside or on the 
boundary of the state.

A polygon P is a relatively simple spatial data 
structure P = {A/VP}. In this case, the attribute- 
value table contains the attributes FIRST_CHAIN and 
POSITION. The value of FIRST_CHAIN is the first chain 
of the polygon, and the value of POSITION is LEFT or 
RIGHT depending on whether the polygon lies to the left 
or to the right of the first chain. Such global 
attributes as AREA and CENTROID can also be stored in 
the attribute-value table.

294



Figure 2 illustrates this structure for a simple 'map 1 
of two regions PI and P2. In this example, we have 
chosen the chains to be the longest sequence of points 
that have exactly one region to their right and one 
region to their left. The directions of the chains

plO

p7 pi

PI P2

H/VP
4- — -^ FIRST CHAIN

POSITION

AREA

CENTROID

(Cl)

LEFT

AREA (PI)

CENTROID (PI)

fl/VP
» — -) FIRST CHAIN

POSITION

AREA

CENTROID

(Cl)

RIGHT

AREA (P2)

CENTROID (P2)

Cl C2 C3

A/VC

Pi

LP

p2

• ————

p3 >4

IFFT-RFGION
RIGHT-REGION
NEXT-CHAIN-IFFT
NFXT-fHAfN-l'IGHl
1 FNGTH
IMTFPPni ATP

> r

(PI)
(P2)
(f.2)(r~u

1 FNGTH(fl)

(FT)

4-,

A/VC

LP

p5 p6

t —

»7 Pi

LEFT-REGION
RIGHT-REGION
NFXT-rHAIN-IFFT
NFyT-fHAIN-RIGH
1 FNGTH
INTFRPni ATF

s f

(PI)
^^--^^

(fl)
_^-^^

1 FNGTH (f2)

(F2)

P4

A/VC

LP

PlO P9

>^^«

p8 Pi

LFFT-REGION
RIGHT-RFGION
NFyT-fHAIN-IFFT
NFyT-fHA IN- RIGHT

1 FNGTH

INTERPOLATE

> <_^-^*^1

(P2)^^--^*^

rni
LFNGTH(O'

(F3)

Figure 2 illustrates a spatial data structure for a 
simple map that encompasses the structures used in the 
Canada Geographic Information System, the DIME system, 
and the POLYVRT system.

29E



were chosen arbitrarily. We do not mean to suggest 
that the points in a chain be stored sequentially as 
(X,Y) condinates. Instead, we are leaving the physical 
storage mechanism open. In some applications, storing 
differences or using Freeman chain codes (Freeman, 
1974) might be appropriate. In other applications, 
storing the chain in a parametric functional form might 
be appropriate. Regardless of the physical form of 
storage, the structural aspect of the representation is 
the same.

Because the spatial data structure is a recursive 
structure, it can naturally handle the hierarchy of a 
region and its holes. We define the boundary of a 
region as follows. A boundary is a polygon plus a 
(possibly empty) list of boundaries of interior 
polygons. Thus a bound-ary can be represented by a 
spatial data structure B = {A/VB, LB} where A/VB 
contains the attributes FIRST_CHAIN and POSITION, and 
the unary relation LB is a list of boundaries. As 
before, FIRST_CHAIN is the first chain of the polygon, 
and POSITION indicates whether the bounded region lies 
to the left or the right of the first chain.

When LB is empty, B is a polygon or simple boundary. 
When LB is not empty, then B has holes in it. Each 
of these holes is also a boundary, so it may also have 
holes. Thus this spatial data structure handles the 
hierarchical polygonal data structures. Other 
hierachic structures such as Edwards, Durfee, and 
Coleman's (1977) and Brassel's hierarchically organized 
spatial data base of Thiessen polygons can be handled 
similarly by our spatial data structure.

In the triangle data structure (Gold, 1976; Males, 
1977) , each triangle points to its vertices and 
adjacent triangles. Thus a triangle is a spatial data 
structure T = {LV, AT} where LV is a list of three 
vertices, and AT is a list of adjacent triangles. Each 
vertex V is a spatial data structure V = {A/VV} 
where the attribute-value table A/VV contains the 
attributes SLOPE, ELEVATION, and other information.

The systems just described all store their geographic 
data in vector form. Vector form is only one form of 
spatial data. It represents areas by their boundaries 
and has the advantage of a very compact representation.

296



Raster or grid form is another form of spatial data. 
In this form areas are represented by the grid cells 
that cover them. The advantage of raster format data 
is the simplicity of performing certain tasks such as 
map overlay. Our spatial data structure can handle 
raster form data just as easily as it handles the 
vector form.

Consider, for example, storing an entire map of regions 
in a run length encoded form of raster grid cell data. 
Shown below is one row of such map data.

20 61 75 98 114

A C A B C B A

In the row shown, there are seven intervals, each one 
of which belongs to one of three regions: A, B, or C. 
Each interval is specified by a beginning pixel, an 
ending pixel, and an interval label. By grouping 
together all intervals of the same label we may 
represent this row by the following table.

Internal List Name

A: (1,6),(20,60) ,(114,130) IL47A
B: (61,74) , (98,113) IL52D
C: (7,19),(75,97) IL36E

Partition
List
PL81B

In this case, the row points to the partition list 
(Merrill, 1973) PL81B which contains the interval lists 
IL47A, IL52D, and IL36E, each of which contains a set 
of intervals for some region in the row.

Grid cell data structures explicitely represent areas. 
We will call the entities employing this representaion 
'map areas'. Thus, the entity 'map area' is a spatial 
data structure MA = {A/VMA,PLR}, where the attribute- 
value table A/VMA has the attribute THEME with values 
such as 'soil type' or 'land use 1 . PLR is the 
partition list binary relation. It consists of a set 
of ordered (row,partition list) pairs. The entity

297



'partition list 1 is a spatial data structure PL = 
{A/VPL,ILS}, where the attribute-value table A/VPL has 
the attribute ROW whose value is the number of the row 
being divided up by the partition list. ILS is the set 
of interval lists composing the partition PL. Finally, 
the entity 'interval list 1 is a spatial data structure 
IL = {A/VIL,HS}, where the attribute-value table A/VIL 
contains the attributes NAME and ROW. The attribute 
NAME takes on a value which is the name of the region 
to which the intervals in IL belong. The attribute ROW 
has as its value the row number. HS is the ordered 
list of horizontal strips .(intervals) in the interval 
list. Each strip in HS is an ordered pair whose first 
component is the beginning pixel and whose second 
component is the ending pixel of the strip.

All of the fast geometric distance, region editing, 
point in polygon,' and line intersection algorithms in 
vector format or in raster format have data structure 
requirements that are easily and naturally fulfilled by 
the general spatial data structure. In the next 
section we illustrate that the general spatial data 
structure can handle the data for inferential reasoning 
required by the intelligent query capability that we 
desire a spatial information system to have.

III. Design of a. Spatial Information System

We are currently involved in the design and 
implementation of an experimental spatial information 
system using the spatial data structures concept of 
Section II. The system will answer user queries and 
solve problems presented to it in a subset of English. 
In this section, we describe some of the important 
features of the proposed system.

Major Data Structures

The spatial data structure is the primitive or building 
block of the system. A finite number of spatial data 
structure types will be allowed. For instance, the 
system might include spatial data structures 
representing the high-level entities states, cities, 
counties, highways, rivers, lakes, and mountains and 
the lower-level entities boundaries, simple boundaries, 
and chains. Thus the system might contain a spatial 
data structure whose name is MONTGOMERY and whose type 
is COUNTY.

298



For each type of spatial data structure, the system 
will keep a prototype structure. The prototype will 
indicate what attributes are found in the attribute- 
value relation of this type of spatial data structures 
and what relations besides the A/V relation comprise 
the data structure. Similarly a finite number of 
relation types will be allowed, and the system will 
keep prototypes of the allowable relations. Thus the 
STATE prototype might indicate that all spatial data 
structures of type STATE have a COUNTY_ADJACENCY 
relation. The COUNTY_ADJACENCY prototype would 
indicate that this is a binary relation and that both 
components of each pair in the relation are spatial 
data structures of type COUNTY. (See Figure 3 in the 
section entitled Primitive Operations.) A user query 
might involve a specific spatial data structure or a 
specific type of spatial data structure. For fast 
access in either case, the system will include a 
spatial data structure name dictionary that maps a name 
to a spatial data structure and a spatial data 
structure type dictionary that maps a type to a list of 
all spatial data structures of that type. Similarly a 
relation type dictionary will map a relation type to a 
list of all relations of that type. We are planning to 
implement relations as relational trees (Shapiro, 
1979) . Note that all of these structures can be 
represented by spatial data structures, unifying the 
whole system.

Primitive Operations

The spatial data structure is a relational structure. 
Because of this, the spatial database system shares 
many characteristics of relational database systems. 
In particular, all of the primitive operations used in 
relational database systems are applicable to the 
relations of a spatial data structure. We will use a 
small example database to motivate the use of these and 
other primitive operations.

Figure 3 illustrates a set of prototypes for spatial 
data structures and their relations that might be found 
in a spatial information system. The STATE prototype 
indicates that STATE is a type of spatial data 
structure having an A/V_STATE relation, a 
COUNTY_ADJACENCY relation, and a RIVERS relation. The 
A/V STATE relation has four attributes: NAME, whose

299



PROTOTYPES

STATE
A/V-STATE
COUNTY.ADJACENCY
RTVFRS -1 ———

\

\

"~7 

f

NAME
POPULATION
AREA
BOUNDARY

CHAR
NUMBER
NUMBER
(POLYGON)

I(COUNTY) I (COUNTY)I

CHAIN
A/V-CHAIN
POINTS

POLYGON
JCHAMS

COUNTY
A/V -COUNTY

CITIES T$ ——
\friT\t\

NAME
POPULATION
AREA
BOUNDARY

CHAR
NUMBER
NUMBER
(POLYGON)

CITY
A/V-CITY "̂~

RIVER
A A/ DTUPP ^

NAME
POPULATION
COORDINATES

CHAR
NUMBER
POINT

NAME
rniiocc

CHAR
rruATKn

^
(P01HT) I

Figure 3 illustrates a set of prototypes for the 
spatial data structure types STATE, COUNTY, CITY, 
RIVER, CHAIN, and POLYGON and the relation types COUNTY 
ADJACENCY, RIVERS, CITIES, POINTS, and CHAINS.

value is a character string, POPULATION and AREA whose 
values are numbers, and BOUNDARY whose value is a 
spatial data structure of type POLYGON.

The COUNTY_ADJAGENCY relation is a binary relation, and 
each member of each pair is a spatial data structure of 
type COUNTY. The RIVERS relation is a unary relation, 
and each element is a spatial data structure of type 
RIVER. The other prototypes convey similar 
information.

300



The following questions are possible queries to a 
spatial information system having the prototypes of 
Figure 3. Under each question, we suggest a sequence 
of operations that might be performed to answer the 
query.

1) What cities are in state X ?

A. Locate state X.
B. Perform a projection operation on COUNTY

ADJACENCY(X) to obtain a list of counties. 
C. For each county Y in the list

For each city C in CITIES(Y)
1. Look up N = NAME(C).
2. Add N to the relation being 

created.

2) What cities lie on rivers in state X?

A. Locate state X.
B. Perform a projection operation on COUNTY 

ADJACENCY(X) to obtain a list of counties. 
C. For each county Y in the list 

For each city C in CITIES(Y)
For each river R in RIVERS(x)
if
POINT_CHAIN_DISTANCE(COORDINATES(C) ,
COURSE(R))=0
then add C to the relation being
created.

3) What counties 
through?

in state X does river R flow

A. Locate state X.
B. Perform a projection operation on COUNTY 

ADJACENCY(X) to obtain a list of 
counties. 

C. For each county Y in the list
if CHAIN_INTERSECTS_POLYGON(COURSE(R) ,
BOUNDARY(Y))
then add Y to the relation being created.

From these and other sample queries, we find the 
following operations are necessary: projection in the 
relational database sense, selection in the relational 
database sense, intersection or join in the relational

301



databases sense, look up the value of an attribute, 
call on geometric or distance functions, create a list, 
add elements to a list, comparison, determine if an N- 
tuple is a member of a relation, create a new relation, 
and create a new spatial data structure.

IV. Summary

We have defined a general spatial data structure to 
be used as the building block in a spatial information 
system. The structure is general enough to represent 
all the data structures used in previous systems 
without changing their logical structures and can 
handle vector or raster data with equal use. We have 
discussed the major data structures needed for a 
spatial information system. Finally we have presented 
a set of possible queries, described the sequence of 
operations needed to answer them, and used these 
sequences to motivate the primitive operations required 
for the spatial information system.

REFERENCES

1. Brassel, K., "A Topological Data Structure for 
Multi-Element Map Processing," An Advanced Study 
Symposium on Topological Data Structure for 
Geographic Information Sustems, Harvard 
University, Cambridge, Massachusetts, October 
1977.

2. Cooke, D. and W. Maxfield, "The Development of a 
Geographic Base File and Its Uses for Mapping," 
Proceedings of URISA, Garden City, Long Island, 
September 1967.

3. Edwards, R.L., R. Durfee, and P. Coleman, 
"Definition of a Hierarchical Polygonal Data 
Structure and the Associated Conversion of a 
Georgraphic Base File from Boundary Segment 
Format," An Advanced Study Symposium on 
Topological Data Structure for Geographic 
Information Systems, Harvard University, 
Cambridge, Massachusetts, October 1977.

302



4. Freeman, H., "Computer Processing of Line 
Drawing Images," Computing Surveys, Vol. 6, No. 
1, March 1974, pp. 57-97.

5. Gold, C., "Triangular Element Data Structures," 
Users Applications Symposium Proceedings, The 
University of Alberta Computing Services, 
Edmonton, Alberta, Canada, 1976.

6. Laboratory for Computer Graphics, "POLYVERT: A 
Program to Convert Geographic Base Files," 
Harvard University, Cambridge, Massachusetts, 
1974.

7. Males, R., "ADAPT - A Spatial Data Structure for 
Use with Planning and Design Models," An 
Advanced Study Symposium of Topological Data 
Structures for Geographic Information Systems, 
Harvard University, Cambridge, Massachusetts, 
October 1977.

8. Merrill, R., "Representation of Contours and 
Regions for Efficient Computer Search", CACM, 
Vol. 16, 1973, pp. 69-82.

9. Shapiro, L. G., "Data Structures for Picture 
Processing" to appear in Computer Graphics and 
Image Processing, 1979.

10. Tomlinson, R. , "A Geographic Information System 
for Regional Planning," Land Evaluation 
(Stewart, ed.) , McMillian of Australia, Sydney, 
Australia, 1968.

303




