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Introduction

There are three famous characterizations of planar 
graphs [1]. Kuratowski's identifies forbidden 
subgraphs K(5) and K(3,3). Whitney's demands a 
combinatorial symmetry called duality, and MacLane's 
requires the existence of a vector space of circuits 
with a particular algebra.

Although none of the three provides a construction of 
a planar representation of a graph, MacLane's is the 
foundation for Tutte's algorithm [3,4] and some later 
algorithms [1] for embedding a graph in the plane. 
These algorithms are used both as a test for planarity 
and as a means for drawing a graph that is planar.

Lefschetz [2] has proven MacLane's Theorem much more 
simply via recourse to algebraic topology. The 
algebra required by the theorem is quite easily 
understood topologically.

We proceed as Lefschetz did to greatly simplify 
Tutte's algorithm. This new algorithm is applied to a 
topological encoding of a map known as the Dual Inde 
pendent Map Encoding (DIME) invented by Corbett [5].

The DIME scheme for maps is in widespread use 
throughout the world. In this scheme, incidence 
relations are explicitly coded and coordinates are- 
associated with points and lines. The encoding of a 
line written as [from node, to node, left block, right 
block] may be tested for consistency.
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The consistency requirements are severe enough that 
they can be used to guess coordinate values where they 
are in error or even where they have never been 
measured. The guessed coordinate values are useful 
for interactively presenting a display of a small 
portion of a map with erroneous coordinates. The 
clutter is eliminated and the console operator may 
proceed directly to the business at hand, e.g., 
locating street addresses or correcting errors.

Our Algorithm Applied

Our algorithm for drawing a map given only a DIME 
description without any coordinates produces a 
representation that is topologically consistent with 
the actual map (Figure 1). The guessed coordinates 
will be a rotation and/or translation of the original 
map, but they will allow for a consistent and 
uncluttered display that can be altered with a small 
amount of effort. Points can be relocated so that 
their position is closer to that of the original map. 
Using the coordinates of the relocated points and 
computing coordinates for all other points results in 
a likeness of the original map (Figure 2).

MICHIGAN

Figure 1. The computed coordinates yield a map
topologically consistent with the original
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Figure 2. Repositioning boundary points (indicated
by "*") produces a map similar to the original.

Mathematical Character of a Map

A map may be regarded as an assembly of elements of 
dimension 0,1 and 2. This is a combinatorial view of 
maps. The elements are points, called 0-cells, line 
segments, called 1-cells, and areas, called 2-cells 
(Figure 3) .
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A 0-cell is A 1-cell is a A 2-cell is a
a point line stretched disk stretched

and formed, but and formed, but
not crossing not torn or
itself folded

Figure 3. 0-, 1-, and 2-cells 

The Algebra of Maps

An algebra of maps is obtained from the elements of a 
map, the 0-, 1-, and 2-cells with coefficients from 
the field of integers. The interrelations among the 
dimensions is expressed in the boundary and coboundary 
operators.

A chain of 1-cells is written formally as

where c(i) is a coefficient and b(i) is a 1-cell. The 
boundary of 2-cell A in Figure 4 is:

The boundary of B is:

£B=d+f+g-c,

the -1 coefficient indicates negative orientation, 
i.e., opposite to the the direction of the arrows.

Chains of 2-cells can be similarly expressed. The sum 
of A and B is just A + B. Notice that the boundary 

$(A+B) = S A + S B is just the boundary of AUB. 
$ A + $B = a + b.+ c + d + f+g-c 

= a + b + d + f + g 
= $ (AU B)
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Note that the interior 1-cell c has coefficient zero 
in the sura. This algebra is the foundation of 
MacLane's Theorem and Tutte's algorithm interpreted 
topologically.

a.

Figure '4. The algebra of maps 

MacLane* s Theorem

Theorem of Sanders MacLane [2, p. 91]: Let G be 
connected and inseparable with Betti number R. A 
necessary and sufficient condition in order that G may 
be represented as a spherical graph is that it possess 
a set of R+l loops L(l), L(2) , ..., L(R+1) such that

I. Every branch of G belongs to exactly two loops
L(h) . 

II. With a suitable orientation of the loops
L(h) , the only independent relation which
they satisfy is "Si L(h) = 0.

The statement of this theorem is combinatorial and 
without reference to topology. A spherical graph is 
also planar and visa versa, since the sphere may be 
projected into the plane stereographically [2, p. 90].

Condition II implies that any R of the L(h) form a 
basis for a vector space of cycles in G. Condition I 
implies that the coefficients may be taken from the 
field of integers mod 2, ignoring orientation. The 
sum of two loops, L(h) and L(j), is then a single loop 
with the common branch of L(h) and L(j) omitted, or it 
is just the two loops again if they do not intersect.

Despite the lack of topology in the statement of the 
theorem, Lefschetz proves it topologically. He shows 
that each of the loops L(h) is the boundary of some 2- 
cell. Property I implies that the complex thus formed
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is a 2-ditnensional surface, and property II implies 
that the surface must then be a sphere. Conversely, a 
spherical graph by definition has an embedding in the 
sphere. The Jordan Curve Theorem and results 
concerning the Betti numbers imply that there must be 
R+l loops L(h) with properties I and II. For details 
the reader is referred to Lefschetz [2] .

The important point about the topological proof is 
that it is very direct and appeals to one's 
geometrical intuition. If property I failed, as in 
Figure 5, we would not have a 2-dimensional surface. 
Rather we would have the intersection of two surfaces.

Figure 5. Intersecting surfaces fail to have propertyl 

Tutte* s Algorithm

This brings us to Tutte's algorithm. We quote his 
definition of "planar mesh," which is fundamental to 
the algorithm:

A planar mesh of G is a set M=[S(1), 
S(2),..., S(k)] of elementary cycles of G not 
necessarily all distinct, which satisfy the 
following conditions: 
(i) If an edge of G belongs to one of the

sets S(i) it belongs to just two of them, 
(ii) Each non-null cycle of G can be expressed 

as a mod 2 sum of some members of M.

Condition (i) implies that no elementary 
cycle of G can appear more than twice as a member 
of M. Further, the mod 2 sum of all members of M 
is null.

Therefore, a planar mesh is just the graph specified 
in MacLane's Theorem but with orientation ignored.
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The elementary cycles (also "peripheral polygons") of 
a planar mesh are the loops of MacLane's Theorem and 
boundaries of- the 2-ceils of Lefschetz's proof. In 
the span of two long and complicated papers, Tutte 
proves combinatorially that the planar mesh of a graph 
G may be identified, and presents his algorithm for 
drawing a graph using the planar mesh. Furthermore, 
he shows that for a nodally 3- connected graph there 
is a unique barycentric representation [3, p.759],

Tutte realizes the function mapping the graph into the 
plane as one that assigns cartesian coordinates to the 
nodes, and maps the edges to straight lines connecting 
the nodes [3, p.752]. The outer boundary is one of 
the elementary cycles; in fact, any one will do. The 
nodes of that cycle are assigned the coordinates of 
the vertices of a regular n-gon in the plane so that 
their cyclic order is preserved. -The other nodes are 
interior to the n-gon and are assigned coordinates so 
that each node is at the center of mass of its 
adjacent nodes (see Figure 6). For a nodally 3- 
connected graph there is a unique assignment of 
coordinates satisfying those criteria. They are also 
determined by the following:

I! c(ij) x(j) = 0 
j 
J) c(ij) y(j) = 0 for n< i £ m, where
*

- number of edges joining nodes i and j,
for i 

+ valency of node i for i=j.

The coordinates for nodes v(i), 1 £ i < n, are already 
known, as these are the vertices of the n-gon.

Figure 6. Barycentric representation of a graph
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Our Algorithm

From the topological viewpoint, Tutte's algorithm is 
building a larger and larger disk rather than adding 
loops to form one large loop, which is the graph 
theoretical interpretation. A disk may be constructed 
vertex by vertex as well as block by block since the 
open neighborhood of a 0-cell is topologically 
equivalent (homeomorphic) to an open disk and a 2-cell 
is homeomorphic to a disk. The union of two over 
lapping disks is again a disk, as shown in Figure 7.

Figure 7. The union of two overlapping disks 
is equivalent to a disk

Disk construction continues merging overlapping disks 
until the entire graph is covered (Figure 8).

Figure 8. Disk construction

Tutte's algorithm and MacLane's Theorem both have 
restrictions on the connectivity of the graph. As our 
algorithm uses the topological equivalence between the 
open neighborhood of a vertex and a disk to allow the 
addition of nodes to the disk, the restrictions are 
not needed.
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The two ways of building a disk, point by point and 2- 
cell by 2-cell, are combined in our algorithm. We 
proceed point by point as much as possible, since this 
simplifies identifying interior nodes. When an 
inconsistently coded vertex is encountered, it must be 
on the boundary, and incident 2-cells are then consid 
ered. The algorithm then continues point by point.

Given a segment list for a graph, the algorithm 
constructs disks and their boundaries, assigns 
coordinates for disk boundary nodes, and computes 
coordinates for disk interior nodes. Disk 
construction begins by identifying a consistently 
coded 0-cell as an interior node and its adjacent 
nodes as disk boundary nodes, or if there are not any 
consistent nodes in the graph, by identifying the 
boundary nodes of a consistently coded 2-cell as disk 
boundary nodes. The algorithm continues adding to the 
disk by examining disk boundary nodes in counter 
clockwise traversal of the boundary. A consistent 
boundary node is replaced by its adjacent nodes, and 
added to the interior of the disk. If the boundary 
node is not coded consistently, then adjacent blocks 
are examined. Nodes on a consistent block boundary 
are added to the disk boundary, and the process 
continues by examining the next disk boundary node. 
The entire disk has been constructed when all disk 
boundary nodes have been examined, and the algorithm 
iterates to build any remaining disks for the graph.

Additions to the disk boundary occur in a manner which 
insures that the counter-clockwise traversal of the 
boundary is not disrupted. Thus, the disk grows in an 
orderly fashion, examining every disk boundary node 
exactly once. Node additions to the disk boundary 
are always inserted after the current disk boundary 
node and are ordered to maintain the counter-clockwise 
traversal. Additions to the disk boundary occur in 
two cases: the replacement of a consistent disk 
boundary node by its adjacent nodes, and the addition 
of boundary nodes of a consistent block. The node and 
block edit routines facilitate the maintenance of the 
counter-clockwise order of the disk boundary, as they 
chain the node co-boundary and the block boundary in 
counter-clockwise order. Figure 9 displays disk 
additions as the result of node and block edits, and 
shows the barycentric representation of the graph.
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(d) disk: node 5,8 block A (e) barycentric representation 

Figure 9. Disk additions

Once a disk and its boundary have been constructed, 
coordinates are determined as in Tutte's algorithm. 
Coordinates of a regular n-gon are assigned to the 
disk boundary nodes, and are computed for disk 
interior nodes such that they are located at the 
center of mass of their adjacent nodes.
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