
THE INTERACTIVE IMAGE SYSTEM FOR THE METEOSAT PROJECT

L. Fusco, G. W. Kerr, R. Powell, H. Rupp 
European Space Agency

E S 0 C
Robert-Bosch-Strasse 5 

D-6100 DARMSTADT (Germany)

1. Introduction

The Meteorological Information Extraction Centre (MIEC) 
of the ESA-METEOSAT Ground System at Darmstadt, West 
Germany, performs the extraction and dissemination of 
meteorological products generated from METEOSAT images.

The products (cloud displacements, sea surface tempera 
tures, cloud top heights, radiation balance, cloud ana 
lysis, water vapour content) are generated in near real- 
time by automatically scheduled batch programs on a 
large mainframe computer. The products so calculated are 
then transmitted by inter-computer link to the MIEC In 
teractive Display System, where they are quality con 
trolled by meteorologists before re-transmission to the 
mainframe for subsequent dissemination to the users.

2. Hardware Overview

The MIEC Interactive System is based upon two inter- 
connectable mini-computers (NOVA 830), attached to three 
specialised meteorological display consoles and 30x6i| 
Kbyte refreshing storages.

Each console consists of the following hardware units: 
- A graphic display of 1024x1024 elements with absolute 

and incremental vectors, alphanumerics and 4 basic 
colours. This display is used for graphics and histo-

61



grams, and alphanumeric display of the results of . 
MIEC processing. The display is equipped with a light 
pen for selection of options or picking of specific 
areas on the screen.

- An alphanumeric display used as a logsheet for indi 
cating the current status of a process (image select 
ed, coordinates of the displayed area, function in 
process...), and a scratch pad for all intermediate 
results the operator may want to keep.

- An alphanumeric keyboard for entering commands or 
text.

- Two function keyboards for initiating given functions
- An image display of 512 lines of 512-pixels. This dis 

play is used for image data display (with or without 
grids) and for software generated pseudo-images.

Each image display screen consists of a 512x512 dot 
matrix. Each dot is composed of 3 colours: red, blue and 
green. Intensity and colour are controlled independently 
by the values in corresponding 8-bit bytes of any two 
refresh memories (or by the same 8-bit byte from a 
single memory).

The processors for the colour and intensity channels are 
controlled by independent sets of operator controllable 
registers which allow masking, shifting, OR-ing, thre 
sholding and scaling of the byte values from each memory.

The colour tables are 256-byte, software-modifiable, 
look-up tables, indexed by the digital output from the 
colour-channel processor.

3. Software Overview

The interactive SW is run on a NOVA 830 under the Data 
General multi-tasking, dual programming operating' sy 
stem RDOS REV.3. This operating system permits two pro 
grams to run in parallel - the foreground program, and 
the background program. A program may consist of a num 
ber of tasks, either resident or overlayed.

Overall system control is handled by a set of permanent 
ly resident tasks (the 'root' tasks), while each con 
sole is individually controlled by tasks loaded into 
fixed overlays, one overlay per console. A special task 
in the root (the console root task, or CRT) monitors the 
alphanumeric keyboard of each console.

62



The operator may type in commands which result in an 
overlay being loaded in the overlay area assigned to 
his console, and one task inside this overlay being exe 
cuted. The procedure command language described in sec 
tion 4.1 (the MIEC command language, MCL) controls this 
process.

The program performing this multi-task, overlayed con 
sole control is the so-called background program. In 
addition to the normal SW facilities available via the 
background program, any console operator may obtain 
additional SW facilities by initiating the foreground 
program via a task in his overlay in the background.

The foreground program is controlled by a function key 
board. The operator can continue to run tasks in his 
background overlay asynchronous with operation of the 
foreground program.

4. Design Features

The design features of most interest can be classified 
under 2 main headings:

the command language,
the picture concept.

4.1 The Command Language

Interactive processing is controlled by invoking se 
quences of independent, user-overlay tasks, initiated by 
means of language commands. The commands may be input 
either directly and individually via an alphanumeric 
console by the interactive operator, or (as for normal 
operational running) from indirect command files con 
taining pre-edited chains of commands (called proce 
dures), or both.

Processing paths through the commands in a procedure are 
controlled at execution time by:
(a) operator decision, via both function keyboard and/or 

alphanumeric input
(b) results of previous processing actions.
The command language allows many of the elements of a
high-level programming language, including:
- forward and backward jumps
- variable count loops (with loop nesting)
- arithmetical and logical testing (and conditional 

jumps)

63



- procedural nesting (called sub-procedures)
- parameter passing via software registers
- indirect parameter files
- register arithmetic.

Each overlay task performs operations according to para 
meters and data sets supplied at run time, either direct 
ly from the operator, or from indirect files, or from SW 
registers (or any combination).

Tasks which require run time parameters call a resident 
subroutine in the root, supplying to this subroutine a 
list of parameter names and types, upper and lower 
limits of each parameter (integer parameters only), and 
default values, if applicable. This routine, which is 
part of the command language interpreter, reads para 
meter values from the current input device (alphanumeric 
keyboard, or indirect file), updating any input parame 
ters corresponding in name to a parameter in the 
supplied list, until a double slash (//) is detected, 
after which control is returned to the user task. (The 
order of parameter input is unimportant. Parameters in 
the task list, which are not input at execution time, 
retain their default values.)

4.1.1 Outline Structure of the Language

The logical unit of input to the command language inter 
preter is an atom having one of the forms:

1. Command word
2. /± logical variable
3. /parameter = value
4. /parameter = \software register n

Character strings in the command line buffer are semanti- 
cally interpreted according to one of these forms until 
a 'carriage return' is detected, after which the system 
determines the physical source'of input for the next 
physical line (indirect file, or alphanumeric keyboard), 
and refills the command line buffer. 
1. Command words may be of the form:

- task name
- [indirect file name
- /*
Logical input to a given task is terminated when the 
command language interpreter detects either // or a 
task name, as the next character string in the 
command line buffer. (The logic of a task may, of 
course, contain any number of requests for parameter

64



input, each request being terminated when // is en 
countered. )
The command word - [indirect file name - requests 
the system to obtain the next and subsequent lines 
from the corresponding ASCII file until either EOF, 
or /* is encountered. If EOF is encountered the next 
physical line is obtained from the previous source 
of lines (which could itself be either an indirect 
file, or the alphanumeric keyboard). 
The command word - /* - requests the system to ob 
tain the next logical line (to //) from the alpha 
numeric keyboard (valid only inside indirect files), 
after which return is made to the indirect command 
file.

2. The atom - /+ logical variable - attributes the 
value true or false to the variable, according to 
the sign + or - respectively.

3. The atom - /parameter = value - sets the parameter 
equal to 'value', where 'value' may be numeric or 
string.

4. The atom - /parameter =\software register n - sets 
the parameter equal to 'content of SW register n'. 
(Software registers may be set and/or tested both in 
side tasks and in procedures. The registers are 
stored in the root area and are therefore global to 
all tasks. Values may be either integer or character, 
depending on prior definition of the register type.)

4.2 The Picture Concept

To construct a screen picture, the operator can define 
which memory should control picture intensity and which 
memory should control colour. Additionally, the operator 
can modify hardware parameters of the TV screen, and of 
both memories independently (e.g. masks, thresholds, 
scale factors, zoom, offset, etc.). Thus from one pair 
of memories, he can construct a wide variety of images 
on the TV screen.

The software has been designed in such a way as to re 
move from the operator the need to remember all the 
various parameter settings and refresh memory contents.

The basic concepts underlying the software design are as
follows:
- any set of 256x256 - or 512x512-byte image data can

be associated with an arbitrary mnemonic name, called
a 'data-set' name

65



- any screen image can be associated with an arbitrary
mnemonic name called a 'picture' name. 

Pictures are in general composed either of one or two 
data-sets, each of which is loaded into a separate memo 
ry. All the hardware parameters associated with each 
picture are held on a file called the 'picture handler 1 
file. Thus, once the operator has loaded his data-sets 
into memory, constructed his pictures, and saved the 
screen and memory parameters on the picture handler 
file, he can at any later time recall particular screen 
images simply by specifying the corresponding picture 
name to the task responsible for setting up the hard 
ware registers of the display.

The physical memories used to hold the data-sets are 
allocated transparently to the operator, so that he 
need never concern himself with actual memory numbers.

The operator (or procedure writer) has a number of fa 
cilities available to simplify the task of handling 
images. These facilities fall into 5 main classes, as 
follows:
- tasks which create picture handler file (PHF) entries, 

allocate refresh memory and NOVA disk file space for 
the corresponding data-sets if required, and which ge 
nerate new PHP entries from existing PHP entries

- tasks which obtain image data-sets from the mainframe 
and store them in pre-allocated NOVA disk image file 
space

- tasks which copy data-sets from NOVA disk file to re 
fresh memory

- tasks which send data-sets from the pre-allocated 
image file space to the mainframe

- tasks which set up pictures on TV, according to 
picture definitions in the PHF.

5. Procedures

A procedure is in essence an ASCII file containing over 
lay task calls and parameter lists, interspersed with 
procedure-control commands.
Procedures can contain any number of task calls. Opera 
tional procedures typically contain 500-1000 command 
lines, each of which will normally initiate a 4K over 
lay task.

One of the major assets of the language is the ease 
with which large error free procedures can be developed.

66



The language elements invoke independent tasks which 
perform specific jobs of work and then terminate, and 
which are essentially independent of preceding task 
calls. Extensive trace facilities allow processing 
paths through the procedures to be instantly followed. 
Incorrect procedure logic can be corrected in minutes 
by on-line editing.

Each task is developed and tested as an independent en 
tity, so that once it performs correctly, it can be 
used in a procedure without any possibility of inter 
ference with other tasks.

Typically, to write, edit and test a procedure of the 
order of 100 command lines, takes of the order of 1 to 
2 days.

More than 60 independent task calls are currently at 
the disposal of the procedure writer, so that he can 
effectively develop and test programs of up to 200 
Kbytes in a couple of days.

6. Application Tasks

In addition to the procedure control and picture hand 
ling tasks already mentioned, the following classes of 
tasks are also available:
(1) Hardware manipulation
(2) Colour table generation
(3) Animation control
(4) Array manipulation
(5) General facilities.

6.1 Hardware Manipulation

These tasks allow operator control of every hardware 
feature, via either keyboard, alphanumeric, potentio 
meter, or tracker ball input.

6.2 Colour Table Generation

These tasks supply easy to use facilities for con 
structing colour tables on-line according to the data 
types (e.g. image data or bit-planes), and dynamic 
ranges involved.

67



6.3 Animation Control

Animation consists in displaying picture sequences on 
a TV screen in rapid succession. Animation loops are 
used mainly to study short-term phenomena and for in 
teractive quality control of the various meteorological 
products- for example, wind vectors, sea surface tem 
peratures, etc.
The system has been designed to allow easy setting up 
and control of animation loops.

The following features are available during an anima 
tion loop:
- zoom any or all of the pictures (keyboard control)
- offset any or all of the pictures (tracker ball con 

trol)
- change speed of the animation (potentiometer control)
- change thresholds and scale factors of intensity and/ 

or colour channels (potentiometer control)
- change direction of the loop (keyboard control)
- step backwards or forwards through the loop (key 
board control)

- change display time of each individual picture in the 
animation (keyboard control).

Note that offsetting can be performed on a zoomed se 
quence, so that the effect is similar to that of 
sweeping over an area with a camera fitted with a te 
lescope lens.

6.4 Image Manipulation

A number of facilities exist for performing array mani 
pulation on the refresh memories, including convolution 
on any defined area of one single data set picture, be 
tween the image data and a defined window.

6.5 General Software

These tasks may be grouped as follows:
- file handling tasks, to print, delete, change attri 

butes, edit, list, rename, etc. standard NOVA files
- data handling tasks, to convert data from the M/P 

standard format to NOVA data format, and to propro- 
cess card image files

- procedure preprocessor task, to preprocess procedures 
written in macro form.

68




