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I. Introduction

The model presented here is intended for the interact 
ive use of architects and engineers. The effective use 
of the model requires adequate computer support. In 
particular, it is desirable that adequate computer 
graphics facilities are in place so that selected 
structural elements may be displayed. A comprehensive 
system for projective geometry is also desirable. The 
purpose of the model is to provide facilities for the 
efficient evoking of selected images, and for the det 
ection of structural or geometric anomalies. These 
anomalies will be of two kinds. First, there may be 
topological anomalies, whose presence makes consistent 
detailing impossible, and second there may be metrical 
anomalies arising from metrical inconsistencies with 
the topological structure. Such anomalies should be 
detected before fabrication is begun.

The model is a framework for organizing the project. 
It is constructed according to the principles of comb 
inatorial topology. Here, a geometric object is con 
sidered as being a synthesis of elementary objects, 
cells, according to a specified scheme of interconnec 
tion. The cells and their connections are not to be 
regarded as representations of material objects, but 
rather as abstract geometric references to which the 
individual details are required to conform. The impor 
tant property of this frame of reference is that it may 
be established at the outset as a self-consistent geo-
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metric object, before any detailing is begun. It 
thereby becomes a powerful tool for controlling the 
mutual consistency and self-consistency of the details 
of the structure.

II. Combinatorial Topology in Three Dimensions

Combinatorial topology deals with elementary geometric 
objects, cells, and a single binary relation on pairs 
of cells. This relation is known as incidence. In 
principle, a list of incident pairs of cells provides 
a complete and unambiguous description of a method of 
assembling cells into an integral structure. Cells are 
endowed with a property, dimension, specified by an 
integer, 0, 1, 2, or 3; and hence we speak of cells 
as 0-cells, 1-cells, 2-cells and 3-cells. We refer to 
cells by the symbols, c , in which the super-script 
denotes the dimension of the cell. The relation of 
incidence is expressed by the symbols, 
(2:1) I(ck, ck+1 )
Note that the cell of lower dimension appears first in 
the pair. The first cell of the pair is said to bound 
the second, and the second cell is said to co-bound the 
first.

The term, cell, is quite a useful one. Although the 
intended interpretation is that 0-cells are points, 
1-cells are arcs, 2-cells bounded simple two-dimension 
al manifolds, the term itself carries no connotation of 
a metrical nature, such as position, curvature, torsion, 
length, area or volume.

There is a second point of view from which the term is 
useful. Much of a designer's work is synthetic, 
connecting simple elements (cells), or modules (collec 
tions of connected cells), in particular ways to form 
integral structures. On the other hand a designer may 
begin with a single amorphous cell, and precede to cre 
ate a structure by subdividing the space, using the 
separation properties of cells of lower dimension.

III. Relations of Order and Orientation

There are certain important properties of cells and 
their incidence relations that are most simply express 
ible in topological terms. The most important of these 
properties is orientation. Every cell, of whatever
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dimension, may be oriented in two ways, referred to as 
positive and negative. Orientation depends on order 
relations. For the 0-cell, which is intended to repre 
sent a point, one arbitrarily associates with each 
0-cell a positive or negative algebraic sign.

For a 1-cell, we establish an orientation (direction) 
by ordering the pair of bounding 0-cells. The first 
0-cell is taken as negative, the second, positive. The 
negative of this 1-cell is defined by reversing the 
order of the bounding 0-cells, and therefore the direc 
tion of the 1-cell. This relation with the bounding 
0-cells is often referred to as the "from-to" relation.

Analogously, the 2-cell is oriented by establishing an 
order on its bounding 1-cells. The poitive 2-cell is 
taken to be that version for which the cell lies to the 
left of each bounding 1-cell. Obviously, this may 
require that some, or all, of the bounding 1-cells are 
negative. We will refer to this scheme of order and 
orientation as the near side view of the cell, and the 
opposite view as the far side.

Finally, the 3-cell is oriented in terms of oriented
2-cells on its boundary. The positive version of a
3-cell is that for which the cell lies on the far-side 
of each bounding 2-cell. Thus, it is possible to 
think of the positive version of a 3-cell as that seen 
from without, looking in, and conversely, the negative 
version as the same cell from the inside, looking out.

The method of orienting the 2-cell is in agreement with 
a convention for which a positive traverse of the 
boundary is taken in the anti-clockwise direction.

IV. Duality, Boundary and Coboundary Operators

The duality of a topological structure is a form of 
abstract symmetry. The concept is of extreme import 
ance to the model. The scheme known as Poincare dual 
ity is used. Dual concepts are listed as pairs in the 
following table.

0-cell ————— 3-cell 
1-cell ————— 2-cell 
boundary———— boundary
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In the sequel many definitions will occur for which 
dimension numbers and the terms "boundary" and "co- 
boundary" appear. Any set of statements of this kind 
is related to a dual set of statements formed by 
replacing the dual elements from the table.

We now give definitions of the two most important alge 
braic operators associated with a topological structure 
the boundary and coboundary operators. It will turn 
out that these operators are dual to each other. The 
boundary operator will be denoted by the symbol, B, 
and the co-boundary operator, by the symbol G.

The boundary operator is defined in stages. The first 
step is to define the operator on the domain, ck , the 
set of k-cells. The domain of the operator is c*, and 
its co-domain the power set of c^"!.

For any cell, ck , B(ck) is the set of all (k-1) cells 
for which the relation

I ( ck-1, ck ) 
holds.

This operator is extended to the domain consisting of 
the power set of ck simply by taking set theoretic 
unions.

In practice the operator is realized as follows: 
For each cell of the argument set, the set B(c) is 
constructed. The signs of the occurrences of individ 
ual cells are retained. The union of all such boundary 
sets is then reduced to an unduplicated list of cell 
names, in which positive and negative occurrences of 
the same cell are distinguished. Each cell is associa 
ted with an integer denoting the multiplicity of its 
occurrences in the amalgamated set of boundaries.

The coboundary operator is defined by a set of state 
ments dual to the set defining the boundary operator 
above.

V. The View and the Section

We are now in a position to relate the formalism of 
combinatorial topology to engineering drawing practice. 
The view, illustrated in Figure 1, represents a 2-cell, 
and its complete boundary, that is, the set of bounding
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1-cells, and the 0-cells on the boundary of these 
1-cells.

The section, illustrated in Figure 2, represents a sec 
tion through a 1-cell, its cobounding 2-cells, and the 
3-cells cobounding this set of 2-cells.

The view and the section are therefore dual structures. 
We further annotate the view with the names of the 
3-cells on the near and far sides of the cell, and 
similarly, annotate the section with the names of the 
"from" and "to" 0-cells on its boundary.

VI. Circuits and cocircuits

A set of k-cells for which the bounding (k-1)-cells 
each occur exactly twice and with opposite orientation 
is a k-circuit. The term cycle is often used in place 
of circuit, and in some branches of topology, the term, 
loop, is used.

The set of all k-circuits will be denoted by the symbol 
Zk , and the set of all k-cocircuits, by Yk .

A convention is required for 0-circuits, and the usual 
one defines a fictitious boundary, the sum of the co 
efficients of the 0-cells. Thus pairs of oppositely 
oriented 0-cells are 0-circuits, and pairs of opposite 
ly oriented 3-cells are 3-cocircuits.

In some of the analytical procedures it will be requir 
ed to identify the non-bounding circuits (and their 
dual structures). When this is required, the bounding 
circuits will be denoted by Zg and the cobounding Co- 
circuits by YQ.

VII. The Algebraic Structure and its Model

We have now reached the final step in the description 
of the topological framework, the construction of the 
algebraic model. This model will provide for an 
efficient storage structure for the necessary data, and 
a natural and convenient language, L, for evoking 
images of particular designated structures.

The model is the algebraic structure, consisting of the
elements,
(6:1) (Ck , Z k , yk, B, G )
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The symbols of the structure are incorporated into a 
logical language as an extension. In this extension 
one can express all of the necessary conditions to be 
satisfied by the model, and all of the necessary 
practical descriptions of cells, cell-modules, and 
extended structures that may be required.

VIII. Examples of terms in the language, L

The operator, ( 1 - B )~1, will represent the Neuman 
series, 1 + B + B 2 +..... When operating on cells 
this operator is always truncated, since c~l, and c4 
are taken to be null sets.

To evoke the image, the view of a 2-cell, the term is 

(7:1) ( 1 - B )-l c 2 

To evoke the section of a 1-cell, 

(7:2) ( 1 - G )-l cl

The duality of these two structures, already remarked, 
is evident from this pair of formulae.

To annotate the 2-cell with its pair of cobounding 
3-cells, the required algebraic term is

(7:3) G c 2

To annotate the 1-cell with its pair of cobounding 
0-cells the term is

(7:4) B c 1

The conditions that must be satisfied for each cell of 
the model are,

(7:5) (ck ) B(ck ) e Z 1^" 1 (e denotes set
membership) 

and the dual condition

(7:6) (ck ) G(ck) e Yk+ l

These examples illustrate the fact that all of the 
necessary terms and sentences can be expressed in 
standard mathematical terms within the language, L.
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IX. One and two-dimensional structures

Many substructures in a complex project are most con 
veniently abstracted as one and two-dimensional geomet 
ric objects. Piping, electrical conductors, partitions, 
decks, etc. are obvious examples. Such structures are 
embedded in three-dimensional space, but are themselves 
abstracted to one and two-dimensional form.

The Poincare duality scheme in two dimensions differs 
from that for three dimensions. The dual pairs are 
listed in the following table.

0-cell ———— 2-cell 
1-cell ———— 1-cell 
boundary -—- boundary

For a one-dimensional object the table is

0-cell ———— 1-cell 
boundary ——- boundary

The model for the one-dimensional case is trivial, but 
the model for the two-dimensional case is determined by 
the same algebraic structure as that constructed for 
three-dimensions. The difference is that the value of 
k, the dimension numbers are restricted to 0, 1, and 2. 
Thus although the structures are formally similar, the 
two dimensional model is simpler. These models are 
displayed as tableau in Figures 3 and 4.

X. Metrical descriptions

Each cell requires a metrical description. It is 
assumed that this set of algorithms, A(c£) is provided 
for each cell of the structure.

There are two general conditions that must be satisfied 
by these descriptions; 1) The non-intersection condi 
tion for pairs of cells, 2) The continuity condition 
between a cell, its boundaries and its coboundaries.

These conditions may be verified algorithm!cally, and 
even approximate interfaces discovered.
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XI. The data storage structure

The data storage structure .is shown schematically in 
Figures 3 and 4. Structures for both two-dimensional 
and three-dimensional manifolds are shown. It is evi 
dent that these storage structures are simple maps of 
the algebraic structure.

Seperate lists of the algorithms defining the shapes 
and sizes of the individual cells are provided. These 
are entered with the cell name as a key.

It is an absolute necessity that this structure be 
edited both topologically and metrically. The topolog- 
ical editing consists of verifying that the model sati 
sfies the cyclic and cocyclic conditions for a boundary 
and a coboundary respectively. The metrical edit 
consists in verifying the continuity conditions for a 
cell, its boundary, and coboundary, and the non-inter 
section condition for all pairs of cells.

A data structure that passes these editing tests is 
necessarily self-consistent both metrically and topo 
logically. The importance of conducting these tests 
interactively cannot be overestimated. 
This form of correction permits re-editing of alter 
ations immediately upon data entry. In fact, it is 
possible for a designer to create the entire structure 
under this discipline, so that no inconsistent data is 
ever accepted into the model at all.
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looking from c^ to c9

Section through a 1 - cell 

Figure 1

near side 
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View of a 2-cell 

Figure 2
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