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Introduct ion j^ Triangles versus Squares

In the last few years considerable effort has been 
expended by various individuals and organizations in the 
development of digital terrain modelling systems. Many 
different methods have been evolved, some of them better 
than others in technique, and some more suitable for 
particular data types and display requirements. Various 
authors have effectively surveyed the literature on the 
subject. Rhind (1975) divided the field into: i) zone 
partitioning (e.g., dividing the map area into regions 
whose vertices are defined by data points); ii) global 
fitting techniques, such as "trend surfaces"; iii) 
gridding methods where elevation values at nodes of an 
arbitrarily-defined grid are estimated by a wide variety 
of techniques, from rolling means to universal kriging; 
iv) "multi-quadric analysis" and v) contour chasing 
methods. Schut (1976) describes six groups: i) moving 
surface methods, requiring the computation of a surface 
at each data point, as for most weighted average 
techniques; ii) "summation of surfaces", in which he 
includes all methods involving the correlation theory of 
stationary random functions; iii) simultaneous patchwise 
polynomials, i.e. polynomials valid over "patches" of 
the surface, such that adjacent patches agree at their 
boundaries; iv) interpolation along equidistant parallel 
lines in a photogrammetric model; v) interpolation using 
a network of triangles with data points as vertices and 
vi) interpolation using characteristic terrain times.
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It is not the intention of this paper to review further 
all of these techniques. Almost all of the above methods 
have in common an arbitrarily-defined regular grid into 
which are inserted the estimated elevation values prior 
to display by contouring or other methods. The 
exceptions are direct contour following, and 
triangulation techniques - the main subject of this 
paper. Consequently it is not inappropriate to make some 
general comparisons between "triangles" and "squares".

The general structure of the "squares" approach is 
clearly comprehended - which is why it has been so 
extensively used in a Cartesian society. The x-y values 
are implicit in the grid definition and only the 
elevations need to be stored. Indeed, using patchwise 
polynomials only the cofficients of each patch need be 
stored (e.g. Jancaitis, 1977).

Triangulation schemes, therefore, are methods that 
describe the relationships between the original data 
points. As such they are, and should be treated as, 
cartographic data structures. This is especially true 
when the data points are selected to represent features 
of the topography (e.g. Peucker, 1977; Males, 1977) 
rather than merely being randomly located. If triangles 
are indeed cartographic data structures then enough 
information should be preserved with each to permit 
negotiation of the network and the rapid answering of 
questions concerning the relationships between data 
points, (Peucker, 1977; Lawson, 1977). Gold et al. 
(1977) suggested preserving for each triangle, pointers 
to the three data points forming the vertices as well as 
to the three neighbouring triangles. This, or any 
equivalent scheme, permits the economical determination 
of any local question of relationships between 
neighbours by an economical local interrogation of the 
data structure. Computationally it is cheap, in storage 
costs it is expensive, requiring two triangles of six 
elements for each data point. Clearly this approach is 
not primarily intended for where the data point density 
is already too great for comfort, as in some remote 
sensing applications.

Techniques of Triangulation

In some applications (e.g. Males, 1977) the 
triangulation is defined manually and becomes part of 
the data. Us-ually, however, it is required that this 
operation be performed automatically. There are two
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major parts to this operation - firstly the requirements 
for a "good" triangulation of any point set must be 
defined, and secondly an efficient algorithm must be 
specified for the actual generation of the network.

Various criteria for a good triangulation have been 
defined. Most take four points forming the vertices of a 
quadrilateral and then decide which of the two possible 
internal diagonals is preferable. Criteria include 
maximizing the minimum height (Gold et al. 1977), 
maximizing the minimum angle (Lawson, 1977) and 
minimizing the diagonal length (Akima, 1975). Shamos 
(1975) mentioned that only the Delaunay triangulation 
(equivalent to Lawson's maximized minimum angle - see 
Sibson, 1978) has been shown to have a unique solution 
without testing every possible set of triangles. Within 
the last couple of years it has become accepted that 
this is the best criterion to use for triangle 
definition. This triangulation is the dual of the 
Theissen or Voronoi or Dirichlet tesselation in which 
any location on the plane is assigned to the polygon 
containing the nearest data point.

Having obtained a criterion for triangulation we need an 
algorithm to implement it. Shamos (1975) has shown that 
the Voronoi tesselation may be defined as 0(n log n) 
time for n data points. Many published algorithms do not 
achieve this. Lewis and Robinson (1978) triangulate by 
splitting the plane; McLain (1976), Akima (1978) and 
Lawson (1977) triangulate by starting with a nucleus of 
points and attaching the best remaining point onto this 
growing network. Gold et al. (1977) start with a large 
enclosing triangle, locate a data point inside it, 
subdivide the triangle into three, find the triangle 
enclosing the next data point by a linear walk through 
the network, and repeat the process. Optimization is 
currently performed after each data point insertion, and 
is 0(n) since an average of six switches of the diagonal 
of a quadrilateral are required for each point. Green 
and Sibson (1978) achieve a similar efficiency for 
generating a Dirichlet tesselation and claim high speed 
for it. Because they preserve the polygons, not the 
triangles, there is a potential 50% saving in pointer 
storage. However, the requirement for additional 
pointers to handle the unequal number of links to each 
polygon, together with the inability to preserve non- 
optimal tesselations / triangulations such as those 
formed by manual entry of surface-specific lines 
(Peucker, 1972) reduces this advantage.
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One feature in this should be emphasized: the last two 
algorithms, together with a few others,•produce fast 
triangulations. While speed comparisons between machines 
are difficult, a simple example should make the point 
clear. With the algorithm of Gold et al. (1977), the 
insertion of a data point into the triangulation, as 
well as its optimization, typically takes only 1.5 times 
as much computing time as the reading of the x, y, z 
values from punched cards or other medium. For most 
practical purposes, the comput ing t ime for tri angulation 
may be ignored.

Properties of Triangulations

As already mentioned, the dual graph of the Delaunay 
triangulation is a Dirichlet tesselation of polygons 
with the properties of the "proximal map" of the SYMAP 
package. Thus the zone associated with each data point 
may readily be outlined by taking the perpendicular 
bisector of each triangle edge connected to the data 
point under consideration. This is useful for various 
purposes, including resource inventory based on drill , 
hole information. The cost is clearly little more than 
that of generating the triangulation.

A very useful property of any triangle in any 
triangulation is that it may be the basis of a three- 
parameter homogeneous coordinate system (Gold et al. 
1977). If linear interpolation is a sufficient 
approximation to a terrain surface then the elevation of 
any internal x-y location is obtained by weighting each 
of the elevation values of the data points at the 
triangle vertices with the appropriate area coordinate, 
and summing.

The ability to process map elements in some sequential 
order is of considerable value with current computer 
equipment. A triangulation may be treated as a binary 
tree structure with respect to any arbitrary direction 
("north"). Any triangle must have either one or two 
south or downwards facing edges (ignoring the neutral 
case of a vertical edge). Thus, if triangles are to be 
processed from north to south the initial triangle must 
be followed by either one or two neighbours to the 
south. The second one, if present, is put on a stack for 
later retrieval and processing continues with the other 
neighbour. The end result is a triangulation "cut" along 
various edges to form a tree structure (Cold and 
Maydell, 1978). Triangles are processed in swathes and
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pen movement is greatly reduced for any drafting (e.g. 
contour lines) required in each triangle. The order is 
such that, looking from the north, frontmost triangles 
are always processed prior to those behind them. This is 
valuable in some forms of terrain display. In addition, 
at any stage in the map generation, the southern 
boundary of the completed portion of the map is 
monotonic in the east-west direction. This has proven to 
be valuable in the construction of contour lines that 
may take any path through the triangular mesh.

Interpolat ion Within Triangles

For purposes of contouring, it is usual to subdivide the 
triangle into a regular grid of sub triangles, (Gold et - 
al., 1977), estimate elevations at each grid node and 
then trace the contours through the grid. This is 
similar to contouring a rectangular grid, but without 
the ambiguities due to interpolating between four 
corners.

As mentioned above, linear interpolation within each 
triangle is very rapid and economical. Where a "smooth" 
surface (continuous in the first derivative) is 
required, rather elaborate interpolation functions are 
needed. This is the most important field of current 
research, and is where most of the computing time is 
spent. The method used by Gold et al. (1977) is 
relatively economical but may be rather "stiff" for some 
applications. Akima (1975) uses a bivariate fifth degree 
polynomial, Lawson (1977) uses Clough & Tocher piecewise 
polynomials in each triangle. Powell and Sabin (1978) 
use a piecewise quadratic approach. Very little 
difficulty arises in defining a mathematical function to 
agree with elevation and slope values at the vertices, 
and these functions have surface continuity between 
adjacent triangles. The difficulty comes in obtaining 
continuity of slope between adjacent triangles at the 
mid-point of the sides. Further work will undoubted 
clarify the preferred methods to be used.

One marked difference between *triangulation techniques
and grids is that smoothing is an inevitable product of
gridding, and is normally not a product of
triangulation. This is basically an advantage in
triangulations, but there is no doubt that where there
is an appreciable error component in the x, y or z
observations at each data point an unsmoothed map is
unattractive to many users. Gold (1979) has used
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neighbouring data points to estimate a mean and standard 
deviation at a central data point and from this to 
perform various types of controlled smoothing and 
examination of residuals. The presence of a high 
standard deviation means that the neighbours do not 
agree well among themselves. This may be due to 
measurement error, inadequate sampling frequency or real 
slope discontinuities such as ridges or cliffs.

The Topographic Model

This phrase has been widely, and perhaps loosely, used. 
Most often it is considered to be a fine grid of 
elevation data - primarily because that is where most of 
the computational effort went. What happens in the case 
of triangulation techniques? As has been mentioned, the 
cost of triangulation is little more than the cost of 
reading the data unless manual triangulatioh is used to 
define certain features.

In computer terms at least, a topographic model should 
be distinguished from a topographic map. As with the 
balsa-wood or styrofoam model, it should be viewable in 
many ways - from any orientation, by slicing it, etc. A 
contour map is merely one way of displaying the 
topographic model. The primary requirement for any 
display of the model is that it may be interrogated to 
obtain the elevation at any x-y location, and that this 
value should be obtained in some reasonably efficient 
manner. Since there will not usually be a data point 
precisely at each desired location, a topographic model 
should be defined as a set of data points plus the 
required algorithms to obtain any requested elevation.

Gold (In Press) describes problems encountered in 
obtaining reasonable zero-thickness contours on isopach 
maps and concludes that, rather than contouring the 
value "thickness", isopachs should be considered as the 
difference between two distinct topographic models . Pe 
states:

"Two important conclusions may be derived from this 
example, and in the opinion of this writer they hold 
true for all map types - whether topographic or 
thematic. The first is that a model consists of an 
attempt to generate a space-covering map of a single 
parameter only. It should conform as closely as possible 
to the original data and avoid synthetic devices such as 
grids. The second point is that grids or rasters should
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be display devices only, to be used as needed to compare 
and display models. Ideally they should not be preserved 
or used again to make subsequent comparisons."

Conelus ions

Where are we now with triangulation-based terrain 
modelling? Current techniques are less appropriate for 
very dense, noisy data than some of the available 
gridding techniques. However, where data storage is not 
a problem - either with large computers or smaller data- 
sets - triangulation techniques can provide a 
flexibility of use not readily available where grids 
have to be generated, preserved and compared. It is to 
be hoped that the next few years will bring further 
understanding of the potential of relational 
cartographic data bases of this type.
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