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ABSTRACT

Shaded choropleth maps normally divide their data into discrete 
classes, rather than symbolizing them as a continuous distribution. 
In practice, five to ten categories are normally used, rarely more 
than twenty. Class intervals for data can be established which have 
equal value ranges, equal numbers of observations, or unequal sizes; 
the latter variety may be derived by factoring, clustering or 
statistical grouping procedures. This paper presents a generalization 
of equal-membership classification, in which class intervals for a 
mapped variable are fashioned to include equal amounts of a second, 
related variable. This usually yields unequal ranges for the mapped 
variable, but the ranges are easier to interpret as they equalize some 
selected quantity. Maps employing such classifications may give 
superior insights into the joint distribution of the mapped and 
classifying variables. Following a discussion of value classification 
issues, the concept of bivariate classification is introduced and 
discussed; a procedure to accomplish it is described, and a Fortran 
implementation of it is given. A series of maps illustrate the 
results of bivariate classification for a group of related statistics.

1.0 ELEMENTS OF SHADED MAPS

Shaded maps communicate three essential elements of information 
to map readers, and require map makers to make decisions regarding all 
three. These elements are:

1. A geographic region, subdivided into zones;
2. Attributes of the zones, grouped into classes;
3. Symbolism shading each class with a certain pattern or color.

Map makers must usually decide upon each of these elements, 
although in particular cases one or more of the elements may be given. 
Frequently, element 1 is not a matter of choice, as both the region 
and its subdivisions are determined by the thematic data which one has 
and wishes to map.

Computer cartographers usually define their own value 
classifications and shading for maps they produce. Usually these are 
specified independently; Once the number of levels is decided, a 
method of classification is then chosen (which may be automatic or 
manual) which creates class breaks at certain points along the Z-value 
range. All zones with values lying between two adjacent breakpoints 
are thus grouped into the same category, and will be symbolised on the

285



map with the same texture, darkness and color. Symbolism for each 
class is then defined which may vary its appearance systemmatically 
according to Z-value, or it may not; although rarely desirable, two 
levels can be defined to have the same shading, and these levels need 
not be adjacent ones in the value range. Most map makers will make 
each level as distinct as possible, and will choose shading patterns 
with a progression of tones to represent the overall range of 
Z-values. Occasionally this is accompanied by changes in the design 
of shading patterns, for instance by using dot patterns to represent 
lower levels, line patterns for middle levels and crossed line 
patterns to represent upper levels. Such variations in pattern and 
texture help readers discriminate among a larger range of classes.

2.0 CLASSIFYING CHOROPLETH MAPS

Despite a rich cartographic literature on the subject, only a 
small number of value classification techniques are employed in 
oublished thematic maps. Most such maps are chorooleth (shaded zone) 
representations, a large portion of which display continuous (as 
opposed to categorical) thematic data group their observations into a 
small number of classes, usually with equal value ranges. Few other 
methods (aside from logarithms, roots and related arithmetic 
transformations) commonly are emploved to communicate thematic 
regularities of spatial data in shaded maps.

Although many methods have been develooed to analytically 
classify thematic variables, their currency remains limited and 
largely academic. This is due both to complexity of methodology (such 
as cluster and principal components analyses), and to the non- 
intuitive nature of their results, which are too often presented 
without adequate discussion of the classification procedures employed.

Most statistical classification techniques are designed to 
maximize value homogeneity of resulting classes. Some methods attempt 
to do so in the spatial domain, others in the value, domain, and some 
in both. Criteria such as proximity, compactness and contiguity are 
used to maximize spatial homogeneity, whereas tests such as 
chi-squared and f-ratio are used to segregate values into classes 
without regard to their spatial properties.

The main alternative to maximizing intra-class homogeneity is to 
attempt to maximize the equality of classes. Such techniques are both 
simple to apply and straightforward to interpret. The two predominant 
ones are (a) equal value ranges and (b) equal value frequencies. By 
keeping either the class intervals or the class memberships constant, 
a map helps its readers interpret spatial patterns because the 
"importance" of each class is made equal by a simple rule.

There is another form of equal classing, normally employed for 
dot-distribution mapping, but rarely in choropleth maos. This method 
strives to equalize the number of objects represented by each symbol, 
such as the number of people, acres of agricultural land or volume of 
business transactions. This implies that the data are extensive in 
nature, rather than intensive — that is, individual observations must 
be capable of being summed to a meaningful total. While this excludes 
many forms of data (e.g., densities, per capita ratios and other 
intensive measures), in many cases the components of such data (such
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as population and area) can be used, as will be shown. It is thus 
conventional cartographic wisdom to use shading to portray intensive 
quantities, (densities or ratios); when shading intensity varies, it 
serves as a natural visual analog for such data. For this reason 
cartographers are critical of maps of extensive quantities in 
choropleth form; when shading density symbolizes extensive 
quantities, variations in the area of zones can perceptually bias 
interpretation.

It is nevertheless possible to portray absolute data on a 
choropleth map, and do so without areal bias. One way to do this is 
to use the third dimension, creating a surface. One can make the 
height of the surface over a zone proportional to either an absolute 
value or an intensity. The former orocedure, however, produces the 
same problems as does shading absolute values; large zones can 
visually dominate small ones even if their thematic values are less. 
However, if the height is made proportional to the areal density of 
some quantity, such as population, then the volume thus created is 
proportional to the size of that quantity in that zone. While map 
readers may not always be able to estimate the relative size of 
volumes (especially if their shapes change), such a three-dimensional 
representation is at least honest, in that:

1. Area of zones can be accurately portrayed in the x-y plane;
2. Heights of zones are proportional to densities;
3« Volumes of prisms are therefore meaningful, the integral of

density over area.

The result is in one sense a bivariate map as both population size and 
population density can be read from it.

Not every cartographer has access to software for plotting 3-d 
prism maos, and such maps are difficult to construct manually. 
Furthermore, clients still tend to prefer 2-d choropleth maps over 3-d 
ones, especially in aoplication areas such as social science and 
marketing. It would thus be convenient and practical to offer their 
advantages in two dimensions (as conventional shaded maps), which the 
procedure described below can begin to accomplish.

3.0 WHAT ARE EQUAL CLASSES?

An equal-interval classification is normally regarded as one in 
which the range of data values (or some standardized range, such as 
zero to one hundred percent) is partitioned into exactly equal parts. 
One assigns shading to such a set of intervals, as one would apply 
hypsometric tints to a contour map. Once the number of classes and 
the overall data range are selected, the sizes and limits of all 
intervals are completely specified. Consequently, the particular 
distribution of data values (aside from their lower and upper limits) 
has no effect on the results. This is why equal-interval classes are 
usually a poor choice when mapping skewed value sets, such as 
population densities.

When very non-uniform statistics are mapped into equal intervals, 
one or two classes (often the lower ones) may contain the bulk of the 
observations, and thus not communicate their variation. Likewise, 
some classes (usually in the middle range) may end up devoid of

287



observations, reducing the information content still further. The 
greater the number of classes and the fewer the number of zones to be 
symbolized, the more likely this is to occur.

Figure 1 is a shaded map of U.S. state population densities, 
classified into 5 equal-sized intervals, each spanning a range of 200 
oersons per square mile. Due to the non-uniformity of this value 
distribution, fully 38 states, or 78 oercent, fall into the lowest 
class. The resulting map is a caricature of the data, with little 
graphic utility. The main order of business for such a map is to 
communicate the spatial distribution of population. Toward this end, 
it might be useful to modify class intervals to reflect the properties 
of that distribution. That is, why not equalize the contents of 
classes rather than their extents? To do this, we can reclassify 
densities in any of three fairly obvious ways, grouping them into 
classes which contain:

1. Equal numbers of observations,
2. Equal areas, or
3. Equal populations.

The first option should be familiar to thematic cartographers, 
being the so-called "quantile" method of classification, more 
generally known as Histogram Equalization. In maps where unit areas 
are constant, such as images or other gridded data, this procedure is 
tantamount to the following one, equal-area classification, yielding 
the same results. For chorooleth maps of most real geographies, 
however, they are not the same, and thus option 1 is a special case of 
option 2. The results of a quantile classing of the data mapped in 
figure 1 is the map shown as figure 2. Here each class contains about 
10 states, identifying those states ranked in the bottom fifth of 
Dopulation density, second fifth, etc. Note that the classes are of 
variable extent, but that in terms of membership they are equal.

3.1 Equal-area Classification

To standardize the areas occupied by each class in the general 
case, a second set of values — the area of each zone — must be 
available and incorporated into the classification process. This 
turns the procedure from a univariate to a bivariate one, a subroutine 
for accomplishing which is listed in Appendix I. To equalize class 
area, this processor reads in data records containing both population 
density and area for each zone in a region, sorts the records by 
increasing population density and simultaneously computes total land 
area. This total is divided by the number of classes to be portrayed, 
yielding its average, the area which each class should ideally cover. 
Then, proceeding up the sorted list of densities, zone area is 
accumulated until this average size has been achieved; the value of 
population densitv given for this observation then defines the upper 
limit of the first class. Repeating this procedure until the highest 
density is reached computes a set of class breaks which partition the 
data into classes of roughly equal area. These breaks are then used 
to classify and map population densities. The more observations which 
exist, the more accurate this orocess can be. With the U.S. states, 
especially if Alaska is included, equal-area classing can be somewhat 
imprecise, the amount of error depending on what quantity is being
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mapped. Figure 3 presents a map of densities classed to have equal 
area. This, rather than figure 2, approximates a Histogram 
Equalization for the data, given that land area varies from state to 
state.

3.2 Equal-population Classification

Approximate as it may be, this simple procedure for deriving 
equal-area classes is remarkably general; one soon realizes that 
attributes other than area can be equalized just as easily, and this 
leads to consideration of option 3, equal-pooulation classification. 
Specifically, each class can be fashioned to include an equal number 
of people, simply by substituting population counts for land area when 
classifying population densities. The results of this substitution 
are displayed as figure 4. Each of the five classes in that map 
contain forty to fifty million persons, specifying the range of 
densities at which respective fifths of the U.S. population live, at 
the state level.

3«3 Equal-income Classification

If thematic classes can be fashioned to standardize the number of 
people which each contains, clearly they can likewise be computed to 
partition any extensive (countable) quantity of interest. To 
demonstrate that the technique of class equalization is independent of 
the data it manipulates, consider the map displayed in figure 5. In 
this map, population densities are again aggregated into 5 levels, but 
classified so that each one contains equal amounts of disposable 
personal income. Although population densities and income may be 
empirically correlated, these two statistics measure different 
phenomena and have no common factors. Yet, one expects that urban 
regions will generate income more raoidly than rural ones, even if the 
soecific causalities are not understood. Figure 5 is an attempt to 
spatially simplify this relationship. The constriction of top-level 
symbolism in it indicates a concentration of wealth in the most dense 
states.

4.0 FURTHER EXPLORATIONS

The final three maps, figures 6, 7 and 8 further illustrate 
bivariate classification, changing the thematic variable to income per 
capita by state for the U.S. in 1979. While population densities 
have a highly skewed, almost lognormal distribution, per capita 
incomes are nearly normally distributed, slightly skewed to the left, 
as the histograms show in the last 3 maps. Consequently, an 
equal-interval classification is much more appropriate for this data;- 
figure 6 shows the result of this, in which each of six classes covers 
a span of 1000 dollars per capita. While far more informative than 
figure 1, figure 6 still obscures a certain amount of data. As the 
U.S. is predominantly a middle-class nation, important distinctions 
may be blurred in the middle income ranges by using equal-interval 
classes.
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Classifying these data to equalize population-oer-class (figure 
7) yields a different pattern of symbolism. This map might be 
considered to be "more reoresentative" of the distribution of income 
levels, as the peculation represented by each class is now nearly 
equal, being about 33 million people. The fact that the largest 
number of states is found in the bottom class indicates that there is 
probably a positive correlation between income levels and population 
size, if not population density. (This insight may help one to 
re-interpret figure 5, in which population density is grouped into 
classes with equal aggregate income.) Notice also that figure 7 seems 
to draw firmer distinctions than figure 6; for instance, Colorado and 
Nebraska both occupy class 3 in the equal-interval mao, but in the 
equal-population map Nebraska has gravitated down to level 2 and 
Colorodo has risen to level 4, as level 3 now has a much smaller value 
range. The author leaves the reader with the exercise of comparing 
figure 8 to figures 7 and 6. Examine the differences in class breaks; 
what generalizations can be made about an equal-income classification 
of per capita income in comparing it with the equal-interval and 
equal-population maps?

5.0 CONCLUDING COMMENTS

Communicating the patterns in which living communities group 
themselves is thematic cartography's essential challenge and its 
special competence. Maps which display single variables may be easier 
to interpret than bivariate ones, but can never really express the 
richness of relationships which characterize living systems. Although 
all maps are simplifications of reality, the use of a second variable 
in classifying a coverage can deliberately add information without 
greatly burdening the map reader, if carefully employed. It would 
certainly be easy to abuse bivariate classification, by attempting to 
associate completely unrelated variables. It is equally tempting and 
easy to compute sourious correlations between variables with 
statistical analysis packages. As in all data orocessing, Garbage In, 
Garbage Out. One may nevertheless have special and valid reasons for 
looking at associations among variables which other analysts may not 
regard as having any important relationship; one person's data can be 
another person's trivia. In any case, the burden of proof should be 
on the mapmaking analyst, who must provide a framework within which 
bivariate (or any) maps may be interpreted. The framework may be a 
theoretical model, hypotheses concerning interesting empirical 
regularities, or it may simply be a set of maps and measures designed 
to describe certain spatially distributed thematic variables. At the 
very least, viewing thematic maps classified in several different ways 
can inform one of more nuances of spatial structure than any single 
map can communicate.
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APPENDIX I 

FORTRAN Procedure for Computing Bivariate Classifications

SUBROUTINE CLASSY (V1,V2,NVAL,BREAKS,BINS,NCLASS,V2SUM,BAD) 
C
C DOES CLASSIFICATION OF VALUE LIST ACCORDING TO EQUAL AMOUNTS 
C OF A SECOND QUANTITY, RETURNING CLASS BREAKS. IT IS ASSUMED 
C THAT BOTH VARIABLES ARE REAL, RATIO QUANTITIES. 
C
C GEOFFREY DUTTON, HARVARD LABORATORY FOR COMPUTER GRAPHICS 
C AND SPATIAL ANALYSIS; AUGUST 1982. 
C
C V1 VARIABLE LIST TO CLASSIFY 
C V2 CLASSIFYING VARIABLE LIST 
C NVAL - NUMBER OF OBSERVATIONS (FOR V1 AND V2) 
C BREAKS - VECTOR OF CLASS BREAKS 
C BINS - HISTOGRAM OF CLASSIFIER 
C NCLASS - NUMBER OF CLASS LEVELS 
C V2SUM - SUM OF CLASSIFYING VARIABLE 
C BAD - INVALID DATA FLAG 
C

DIMENSION BINS(NCLASS)
DIMENSION VKNVAL), V2(NVAL), BREAKS (NCLASS) 
DIMENSION INDEX(5000), V1SORT(5000) 

C
C FIRST CREATE INDEX POINTERS 
C AND SUM WEIGHTING VARIABLE 
C

V2SUM = 0.0 
DO 10 I = 1,NVAL 

INDEX(I) = I 
VAL = V2(I)
IF (VAL .NE. BAD) V2SUM = V2SUM+VAL 
V1SORT(I) = V1(I) 

10 CONTINUE 
C
C ZERO OUT THE BINS ARRAY 
C

DO 151 = 1,NCLASS
BINS(I) = 0.0 

15 CONTINUE
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c
C SORT THE PRIMARY VARIABLE AND AN INDEX TO IT 
C

CALL SORT (V1SORT,INDEX,NVAL) 
C
C V2BAR IS HOW MUCH OF V2 EACH CLASS SHOULD GET 
C

V2BAR = V2SUM/FLOAT(NCLASS) 
C
C NOW ASSIGN VALUES TO CLASSES, VERY SIMPLY 
C

KLASS = 0 
VSUM2 =0.0 

C
DO 20 I = 1,NVAL 

J = INDEX(I) 
VAL = V2(J)
IF (VAL .NE. BAD) VSUM2 = VSUM2+VAL 
LEVEL = VSUM2/V2BAR
IF (VAL .NE. BAD) BINS(LEVEL+1) = BINS(LEVEL+1)+VAL 
IF (LEVEL .LE. KLASS) GOTO 20 

C
C NEW LEVEL REACHED; SOME OF V2 SPILLS INTO NEXT ONE 
C

JO = INDEX(1-1)
BREAKS(LEVEL) = (V1(J)+V1(JO))/2. 
KLASS = LEVEL 

20 CONTINUE 
C

RETURN 
END

FIGURES

The following maps of the U.S.A. by state demonstrate the use of 
bivariate classification. These illustrations were produced by the 
POLYPS program, the 2-d choropleth mapping module of the Laboratory's 
ODYSSEY Geographic Information System. POLYPS was written by Scott 
Morehouse.
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STATE POPULATION DENSITIES, 1975
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AN EQUAL-INTERVAL CLASSIFICATION

Closs contents ore: 200. 200. 200. 200. 200 persons/sq. mile 
Class breaks are: 200, 400, 600, 800 persons/sq. mile 
Class Memberships are: 38. 5. 1. 2, 2 states.
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POPULATION DENSITIES, 1975

P 300 400 BOO TQg 1000

EQUAL-MEMBERSHIP (QUANTILE) CLASSIFICATION

Class contents are: 10. 11. 8. 9, 10 states
Class Breaks are: 20. 51, 85, 160 persons/sq. mile;
Class Memberships are: 10, 11, 8. 9. 10 states;
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POPULATION DENSITIES, 1975
1000

.800

.600

.400

.200

EQUAL-AREA CLASSIFICATION:

Closs contents are: 522, 636, 606, 577, 526 square miles; 
Class Breaks are: 9.5, 31, 52, 130.5 persons/sq. mile; 
Class Memberships are: 6. 7, 8. 13, 14 states

POPULATION DENSITIES, 1975
.1000

.800

.600

.400

.200

AN EQUAL-POPULATION CLASSIFICATION:

Class contents are: 38.7, 39.4, 34.8, 43.5, 39.4 million persons; 
Class Breaks are: 50.5, 106.5, 150. 263 persons/sq. mile; 
Closs Memberships are: 22, 13. 4. 4. 8 STATES;
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POPULATION DENSITIES, 1975
r iooo

800

600

.400

.200

AN EQUAL-INCOME CLASSIFICATION

Class contents are: 333, 341. 348. 395. 359 billion dollars;
Class breaks are: 48, 124, 156.5, 335 persons/sq. mile;
Class Memberships are: 20, 16, 4, 5, 6 states.

DISPOSABLE INCOME PER CAPITA, 1979

EQUAL-INTERVAL CLASSIFICATION

Class contents are: 1000, 1000, 1000. 1000. 1000. 1000 $/person 
Class breaks are: 7000. 8000, 9000, 10000. 11000 I/person; 
Closs memberships are: 3, 15, 18. 12, 2, 1 states;
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. 12000
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.10000
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DISPOSABLE INCOME PER CAPITA, 1979

EQUAL-POPULATION CLASSIFICATION:

Closs contents ore: 30, 30.7, 36.2, 23.6, 39.2, 36.1 million people 
Closs breaks are: 7462, 8546, 8768, 9077. 9762 I/capita; 
Class memberships are: 14, 12, 6, 5, 8, 6 states

7
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.9000

.8000

.7000

16000

DISPOSABLE INCOME PER CAPITA, 1979

EQUAL-INCOME CLASSIFICATION

Class contents are: 297, 288, 317, 280. 319. 275 billion $ 
Class Breaks are: 7953, 8574, 8808, 9124 9868$/PERSON; 
Class memberships are: 14, 12, 6. 5, 8. 6 states.
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