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Abstract

The fractal dimension of a curve is a measure of its geometric complexity and 
can be any non-integer value between 1 and 2 depending upon the curve's level 
of complexity. This paper discusses an algorithm, which simulates walking a 
pair of dividers along a curve, used to calculate the fractal dimensions of 
curves. It also discusses the choice of chord length and the number of solution 
steps used in computing fracticality. Results demonstrate the algorithm to be 
stable and that a curve's fractal dimension can be closely approximated. 
Potential applications for this technique include a new means for curvilinear 
data compression, description of planimetric feature boundary texture for 
improved realism in scene generation and possible two-dimensional extension 
for description of surface feature textures.

INTRODUCTION

The problem of describing the forms of curves has vexed researchers over the 
years. For example, a coastline is neither straight, nor circular, nor elliptic and 
therefore Euclidean lines cannot adquately describe most real world linear 
features. Imagine attempting to describe the boundaries of clouds or outlines 
of complicated coastlines in terms of classical geometry. An intriguing concept 
proposed by Mandelbrot (1967, 1977) is to use fractals to fill the void caused by 
the absence of suitable geometric representations. A fractal characterizes 
curves and surfaces in terms of their complexity by treating dimension as a 
continuum. Normally, dimension is an integer number (1 for curves, 2 for areas, 
and 3 for volumes); however, fractal dimensions may vary anywhere between 1 
and 2 for a curve and 2 and 3 for a surface depending upon the irregularity of 
the form. Although individual fractals have been around since the 1900's,
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Mandelbrot was the first to recognize their applications outside of 
mathematics.

This paper discusses an algorithm, written in an interactive setting, designed to 
measure the fracticality of a curve and additions to theory. It also presents 
results from examining several cartographic curves.

DEFINITION OF FRACTALS AND SELF-SIMILARITY

In Euclidean geometry every curve has a dimension of 1 and every plane has a 
dimension of 2. This is generally referred to as the topological dimension (Dt). 
These dimensions remain constant no matter how complex or irregular a curve 
or plane may be. For example, the west coast of Great Britain contains many 
irregularities, but the topological dimension remains 1.

In the fractal domain a curve's dimension may be between 1 and 2 according to 
its complexity. The more contorted a straight line becomes, the higher its 
fractal dimension. Similarly, a plane's dimension may be a non-integer value 
between 2 and 3. The fractal dimension for any curve or surface is denoted by 
(D) and within this framework: D>.Dt. Mandelbrot (1977) proposes the 
following definition for a fractal: "A fractal will be defined as a set for which 
the Hausdorff-Besicovitch dimension strictly exceeds the topological dimen 
sion." The precise definition of the Hausdorff-Besicovitch dimension can be 
found in Besicovitch and Ursell (1937).

Central to the concept of fractals is the notion of self-similarity. Self- 
similarity means that for any curve or surface a portion of the curve or surface 
can be considered a reduced image of the whole. However, seldom in nature 
(crystals are one exception) does self-similarity occur and therefore a statisti 
cal form of self-similarity is often encountered. In other words, if a curve or 
surface is examined at any scale it will resemble the whole in a statistical 
sense; therfore, D will remain constant. Brownian motion is an excellent 
example of statistical self-similarity. Because of this principle, a curve can be 
decomposed into N=r nonoverlapping parts and each subsegrnent has a length of 
l/r=l/N. Similarly, a unit square can,be divided into N=r squares, where the 
similarity ratio is r(N) = 1/r = 1/N 2 . In either case the following equation 
applies:

D= log N/log (1/r) (1)

and could be called the shape's similarity dimension. D can also be expressed 
as:

D=log (N/N0)/log (Xo/X) (2)

where X0 and X are two sampling intervals and N and N are the number of 
such intervals contained. If a curve resembles a straight line then when the 
sampling interval is halved, N doubles and the proportion equals 1. The 
majority of cartographic curves are not straight lines and therefore N will more 
than double causing D to be greater than 1. The principle of self-similarity is 
dismissed by Goodchild (1980), Hakanson (1978), and Scheidegger (1970). 
Hakanson, for example, points out the absurdity of postulating the validity of 
self-similarity down to the size of the pebbles on the coastline and at the 
molecular interstices of those pebbles. Goodchild demonstrates that although 
Richardson (1961) found the west coast of Britian to have a constant D of 1.25 
over sampling intervals between 10 and 1000km., he found the east coast to 
vary between 1.15 and 1.31 for a similar sampling interval. This suggests that 
whatever created the irregularities on the coastline acted at specific scales. 
Goodchild states that since self-similarity is only one aspect of the fractal 
approach, it would be unwise to reject the entire concept.
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DEVELOPMENT OF THE FRACTAL CURVE ALGORITHM 
AND EXTENSION OF THEORY

The following original algorithm is based on the earlier empirical work 
performed by Richardson (1961) and later extended by Mandelbrot (1967). 
Richardson measured the lengths of several frontiers by manually walking a pair 
of dividers along the outline so as to count the number of steps. The opening of 
the dividers (n) was fixed in advance and a fractional side was estimated at the 
end of the walk. The main purpose in this section of Richardson's research was 
to study the broad variation of In with n.

Richardson produced a scatterplot in which he plotted log total length against 
log step size for five land frontiers and a circle. Mandelbrot (1967) discovered 
a relationship between the slope (8) of the lines and fractal dimension (D). To 
Richardson the slope had no theoritical meaning, but to Mandelbrot it could be 
used as an estimate of 1-D, which leads to:

D=l-3 (3)

The algorithm simulates walking a pair of dividers along a curve and counts the 
number of steps. In cases where more than one intersection occurs, the 
intersection which comes first in order forward along the curve is selected. To 
be more accurate, step size (prescribed opening of the dividers) is called chord 
length (cl) and the number of steps is called the number of chord lengths.

In order to begin walking the dividers along the curve, the dividers must be set 
to some opening. The curves used in this research are not infinitely subdivided 
fractal curves so that selection of the initial chord length must be based on 
some attribute of the curve. For a very contorted curve it would be 
meaningless to choose a chord length many times shorter than the shortest line 
segment. If an extremely short chord length is selected, an attempt to examine 
the fractal character of a curve would extend beyond the primitive subelements 
used to represent the geometry of the resulting form. In other words, beyond 
this lower limit of primitive subelements, the curve's fractal dimension behaves 
as if it is a straight line. A suggested initial chord length is determined by 
calculating the distance between each two consecutive points on the curve and 
taking 1/2 the average distance. The average distance is divided by 2 because 
the sampling theorem states one should sample at 1/2 the wavelength so that no 
significant variation escapes. This presents an approximate lower limit as to 
the selection of the initial chord length. Although the accuracy of this method 
is dependent on the manner in which the curve is digitized, the form of the 
curve often dictates this manner.

After the initial chord length is determined, the algorithm computes the 
distance between the first two points on the curve using the standard distance 
formula. If the distance is greater than chord length (cl), a new point is 
interpolated between points 1 and 2 using the following interpolation equations:

DP = (cl-DISTl) / (DIST1-DISTA) (4) 

XNEW = X 1 + DP* (X 2-Xj) (5)

YNEW = YJ +DP* (Y Z-Y I ) (6)
where DP = distance proportion

DIST1 = distance between the present point and the first forward 
point on the curve
DISTA = distance between the present point and the second forward 
point on the curve
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XNEW = new X- coordinate 
YNEW = new Y- coordinate 
X,Y = X and Y coordinates of point 1 and 2.

Figure 1 demonstrates how a point is interpolated on a straight line segment.

CHORD LENGTH

X,,X,

DIST1 = 0

DI5T A

COORDINATES OF INTERPOLATED POINT 

X,,*, X,
2, "2-H————

C^W, YKEW

Figure 1. Interpolating on a straight line segment.

If the distance is less than the chord length, the distance between points 1 and 3 
(DISTC) is computed. If DISTC is greater than the chord length, it is known 
that the chord length segment intersects between points 2 and 3 and that the 
distance between these points is determined (DISTB); See Figure 2a.

CHORD IZNGTH

DISTA DISTB

DISTC

DIST3'

Figure 2. Three point interpolation.
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The point of intersection is computed using trigonometric functions. An angle 
C is determined using the law of cosines.

C= cos" 1 DISTB2 + DISTA 2 - DISTC 2 
2* DISTB * DISTA

(7)

Since angle C is known, an angle A, which is the angle the chord length 
intersects between points 2 and 3, can be computed.

A -SIN" 1 ((DISTA*sin C)/cl) (8)

Now that two angles are known, angle 3 is easily computed. Because angles A 
and B are known, a side (DISTB') can be calculated; see Figure 2b.

DISTB' = (DISTA*sin B)/sin A (9)

DISTB' provides the distance, from point 2, in which the chord length's 
intersection is located on the segment between points 2 and 3. A distance 
proportion is calculated using:

DP - DISTB'/DISTB (10)

Since the distance proportion and the X,Y coordinates for points 2 and 3 are 
known, the equations used to interpolate for a straight line segment can be used 
to determine the new coordinates: see Figure 2c. After the new point is 
located, this new point becomes point 1 and the next two forward points on the 
curve become points 2 and 3. Each time a chord length's intersection is 
determined, 1 is added to the number of chord lengths.

In the case where DISTC is less than the chord length, the third point is 
incremented by 1 (fourth point) and the distance again checked. This continues 
until the distance is greater than the chord length or the end of the curve is 
encountered; see Figure 3.

CHORD LENGTH

Figure 3. More than three point interpolation.
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When the distance does become greater than the chord length, the chord 
length's point of intersection is determined by using the same trigonometric 
equations as discussed above. The only difference is the sides of the triangles 
may be longer. At the end of the curve, if the chord length is greater than 
DISTA, the portion of the remaining chord length is added to the number of 
chord lengths.

After the dividers are walked along the curve with the initial chord length, the 
dividers are opened to another distance. This distance is a geometric adding of 
the first chord length. For example, if the initial chord length is 2, then the 
subsequent chord lengths would be 4, 8, 16, 32, 64, and so on. This eliminates 
biasing when using linear regression because on a logarithmic scale, geometric 
adding provides equal spacing between the chord lengths.

The number of solution steps or the number of times the dividers, with different 
chord lengths, are walked along the curve is limited by the number of chord 
lengths used to estimate length. The minimum number of chord lengths used to 
approximate length is 5. This is chosen to provide consistency among results as 
opposed to using a variable limit, but is subject to change pending additional 
research.

After each time the dividers are walked along the curve, the number of chord 
lengths and the corresponding chord lengths are saved. These are used in the 
linear regression where log line length (number of chord lengths *chord length) 
is regressed against log chord length. A curve's fractal dimension is determined 
by using equation 3.

To provide an indication of the proportion of variance in the response variable 
explained by the describing variable, r is computed. This value plays an 
important role in determining the optimum number of solution steps. A low r , 
for example when the number of solution steps equals 12,jneans the initial 
chord length falls below the primitive subelements. A low r is determined by 
decreasing the number of solution steps and comparing, the two values. The 
desirable number of solution steps is indicated when r reaches its maximum 
without the number of steps falling below 5. A linear regression with less than 
5 points opens up some criticisms as to the validity of results and it should be 
emphasized the linear regression is used as a parameter estimate and not for 
statistical inferences.

EXAMPLES AND RESULTS

Of the five land-frontiers Richardson measured, four have been point digitized 
and used in this study. They are: coast of the Australian mainland; coast of 
South Africa, starting from Swakopmund to Cape Sta. Lucia; frontier between 
Spain and Portugal, moving south to north; and the west coast of Great Britain, 
from Land's End to Duncansby Head. Table 1 shows D as the result of 
Richardson's measurements and the new D suggested by this research. The 
expected discrepancy is the result of the digitization process because digitiza 
tion allows the capture of minute detail in a curve, and since these curves were 
digitized at a larger scale, a higher D is anticipated.

Curve Slope (g) D (1-B) New D 
West Coast of Great Britain -.25 1.25 1.2671 
Coast of Australia -.13 1.13 1.1490 
Coast of South Africa -.02 1.02 1.0356 
Land-frontier between Spain -.14 1.14 1.1014 

and Portugal

Table 1. Result from Richardson's (1961) research, corresponding fractal 
dimension and the new suggested fractal dimension.

486



For this paper, Kodiak Island is used to demonstrate how the fractal curve 
algorithm operates. The curve was digitized in trace mode with delta minimum 
and delta maximum variations at .002 and .05 respectively. The outline 
contains 1653 points and is in Figure 4.

Figure 4. Kodiak Island with 1653 points where 
the fractal dimension equals 1.3105.

The results from calculating D are in Table 2 where the different initial chord 
lengths are selected to show the possible variations in D over a number of 
sampling intervals. The results show D to vary from 1.1836 to 1.3714. These 
variations in D reflect a lack of self-similarity in the curve.

Initial Chord 
Length 
.00400

* .01833
** .03666 

.05894 

.07500 

.08000 

.10000

D
.1836
,2619
.3025
.3105
,3466
,3660
,3714

R-SQ 
.827614 
.916728 
.954146 
.976810 
.964087 
.972126 
.975220

No. of Solution 
Steps 

10 
8 
7 
6 
6 
6 
5

*Suggested initial chord length
**Average segment length

TABLE 2. 
Kodiak Island at 1:1,000,000 with 1653 points

The selection of an extremely short initial chord length of .01833 represents 
examining the curve below its primitive subelements and biases D toward a 
straight line. The corresponding scatterplot in Figure 5 displays a curvature of 
the data points resulting in a lower R-SQ.
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DIPIENSION • 1.2619 
R-SQ • 0.916788 
INITIAL CHORD 
LENGTH - 0.01833 
NO. OF STEPS » 8 
ORG. LENGTH • 60.554 
CURVE)

1.7739

LOG 
(LINE LENGTH)

1.3439
-1,7368

LOGCCHORD LENGTH)
0.3704

Figure 5. Scatterplot for Kodiak Island (1653 points) 
where the initial chord length equals .01833.

It is this type of curvature, resembling the shape of a rainbow, that indicates 
the shortness of the chord length. The chord length of .01833 is the average 
segment length and is calculated by computing the distance between each two 
consecutive points on the curve, summing the distances, and dividing by the 
number of segments. The suggested D to represent the curve is 1.3105. The 
most appropriate D value is determined from the minimum amount of 
curvature present in the scatterplot resulting in the relatively high R-SQ value. 
The suggested initial chord length of .03666 is still too small, indicated by the 
low R-SQ value, but represents a starting point at which to determine D.

A thinned version of Kodiak Island is in Figure 6 and contains 1000 points.

Figure 6. Kodiak Island with 1000 points where 
the fractal dimension equals 1.2949.



The elimination of 653 points is accomplished with a program which deletes 
excessive points within a certain chord length. Table 3 indicates D varying 
between 1.214 and 1.3659.

Initial Chord
Length
.00700
.00800

* .02947
** .05894 

.10000

D
.1778
.2144
.2558
.2949
.3659

R-SQ 
.861745 
.867113 
.942722 
.974398 
.971356

No. of Solution 
Steps 

9 
9 
7 
6 
5

* Suggested initial chord length
**Average segment length

TABLE 3. 
Kodiak Island at 1:1,000,000 with 1000 points

The comparison between the same chord length of .05894 for the original and 
thinned islands displays how stable the algorithm is to measure D. This initial 
chord length produced a D of 1.3105 (1653 points) and 1.2949 (1000 points) 
giving a 1.19% difference. The D for the 1000 point island is expected to be 
slightly lower because any data thinning process normally removes some 
complexity from the feature. The proposed D for the thinned island is 
approximately 1.2949 and the scatterplot is in Figure 7.

DIMENSION • 1.2949 
R-SQ - 0.974398 
INITIAL CHORD 
LENGTH • 0.05894 
NO. OF STEPS • G 
ORG. LENGTH • 58.883 
CURUE)

1.7416 f

LOG 
(LINF LENGTH)

1,3050
-1.2296 0.2756

LOG(CHORD LENGTH) 

DIMENSION • 1-SLOPE

Figure 7. Scatterplot for Kodiak Island (1000 points) 
where the initial chord length equals .05894.

SUMMARY AND CONCLUSIONS

The results based on the previous empirical curves point out the importance of 
selecting the appropriate initial chord length. A chord length which is too short
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is easily detected by either examining the amount of curvature present in the 
scatterplot or the low R-SQ value. Normally, the suggested initial chord length 
falls within this category, but it must be emphasized that this chord length is 
merely a beginning point. The ideal initial chord length, which produces the 
most appropriate D, is selected by observing the behavior of the scatterplots, 
R-SQ values, and the number of solution steps. This research, like Richardson's 
work, indicates that from 5 to 8 solution steps are sufficient to determine the 
slope of the regression line and thus fracticality.

The results also indicate the fractal curve algorithm to be stable, and that it is 
able to closely approximate D. The variations in D, over a number of sampling 
intervals, reflect a need to examine the effects of self-similarity, or lack of it 
on a curve's fracticality. Finally, this research brings into focus the strong 
problem solving capabilities, at the hands of cartographers, through the use of 
interactive computer graphics.
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