
RELIABILITY CONSIDERATIONS
FOR COMPUTER-ASSISTED CARTOGRAPHIC

PRODUCTION SYSTEMS

D. L. PendIeton
National Ocean Survey

National Oceanic And Atmospheric Administration
6001 Executive Blvd.
Rockvl Me, MD 20852

ABSTRACT

The development of computer-based cartographic produc
tion systems Is examined from the standpoint of hardware and
software reliability factors. The Inherent complexity In
the design of non-trivial systems Is examined and specific
techniques from the fields of system engineering and compu
ter science are described. The basis for new hardware
systems which Incorporate multiple procesors, memories,
controllers, mirrored disk files, and fall-soft operating
systems Is explored. Finally, a system development project
team concept Is summarized, having the objective of ensuring
that more reliable software Is built by using structured
top-down software engineering techniques.

INTRODUCTION

The field of automated cartography is developing and
advancing at a rapid rate. Much of this development In the
past has been restricted to systems geared to the research
environment, as one would expect during a formative period.
The field Is currently passing through this phase into one
that Includes both large and small systems planned for
volume production work. Production systems, In general,
differ from research tools In several major ways. One of
the most Important of these Is the requirement to meet an
established schedule on a regular basis. This paper
addresses two of the major factors, hardware and software,
whose reliability should be considered In the development of
such production systems to Insure that the negative Impacts
of system downtime on production schedules are minimized.
The goal is to increase the cartographic community's aware
ness of the state-of-the-art so that users can improve the
reliability of their systems by Influencing the designs of
fn-house and commercially available systems.

COMPLEXITY AND LEVELS OF AUTOMATION

The impacts of unscheduled computer system downtime on
operations differ depending upon the kind and degree of
automation present In the production sequence. For purpose
of analysis, an assumption Is made that there exists a
threshold value for automation support beyond which produc
tion operations would be completely dependent upon a proper
ly functioning hardware/software system to meet

597

established production deadlines. That Is, In the event of a
major system failure, a retreat to previous manual methods
would not be possible since the system would be performing
complex operations no longer feasible to perform manually.
Suffice It to say that the automated system would exist In
order to: (1) meet the production requirement with fewer
resources, (2) handle a greater workload, (3) produce higher
quality products, or (4) meet more stringent deadlines than
the manual system It replaced. Given this assumption, the
goal of designing significantly automated production systems
revolves around questions relating to the major components
of hardware, software, the Increased complexity of automa
tion required, a myriad of other ancllllary factors that
comprise a functioning system, and the collective Impacts
of these elements upon the reliability of the total system.

Figure 1 Illustrates the growth of system complexity
as the level of automation Is Increased for a system design.
After a level of automation Is reached that provides signi
ficant computer assistance, the complexity begins to grow
exponent I ally.

Level of Automation •

ith increase in auto-

Point of
significant

utomation

System Complexity

FIGURE 2. Decrease in reliability
with increasing complexity.

The dramatic rise In system complexity at the point of
exponential growth Is due to the fact that the number of
required hardware and software system components, and their
Interfaces, begin to multiply If the system performs any
sophisticated functions. As it happens, It is the sophisti
cated functions In any system that make It really useful and
cost effective. It Is not surprising, therefore, that when a
significantly automated feature is Installed In an existing
system, a dramatic fal l-off in total system rel lablI ity is
experienced. This effect Is shown In Figure 2. It appears
that the fundamental problem in Implementing and using auto
mated production systems with significantly useful
features Is one of managing this exponentially growing fac
tor of complexity (Walker, 1978).

598

SYSTEM AVAILABILITY

The reliability of an Item Is the probability that It
will be able to correctly perform a required function over a
stated period of time (Arsenault, 1980). The reliability of
a system's hardware and software components can be quite
good and the system may operate as planned for extensive
periods. However, the additional effects of the time re
quired to bring the system back up when It does fail has to
be considered. Production systems must perform to a pre
dictable level on a continuing basis with system failures
and repairs taken into account. A measure of the total
effects of these factors Is the system availability, or the
probability that the system will be available to perform the
required work at the requested time. This can be defined
as:

UP TIME MTBF
A =

UP TIME + DOWN TIME MTBF + MTTR
(1)

where MTBF Is the "mean time between
failures," and MTTR is the "mean time
to repalr."

The availability of a system with nonredundant com
ponents can be computed as the product of the availability
of each of the system components Aj:

A(System) = (A,) (2)

When the
I denti caI, then

availabilities of all components are

A(System) = (A,) n (3)

The Important point summarized here is that the total
system availability will be less than the availabilities of
the individual components, as shown In Figure 3. The
problem then, is to find ways of Increasing the system
availability for hardware and software components In the
face of Increasingly complex designs.

A = 0.9 A = 0.9 A = 0.9

A(System) = (0.9) = 0.73

Figure 3. System Availability Less Than That Of Components

599

A SYSTEMS ENGINEERING APPROACH

Having established the need to take levels of automa
tion, complexity, reliability, and system availability Into
account In the development of cartographic systems, the next
step Is to Identify existing techniques that have already
proven effective elsewhere. The field of systems engineering
has a well developed body of knowledge and specific tech
niques for developing systems throughout a life cycle
process (Hall, 1962). All of these techniques are ultimate
ly directed to the specification of hardware, software,
facilities, personnel skills, training, and procedures
needed to meet customer requirements within predetermined
rel IablI Ity crIterI a.

One postulate of this paper is the view that these
existing techniques should be transferred and applied to the
development of cartographic systems In a formal way, instead
of reinventing the wheel on a trI a I-and-error basis. Some
of the particular kinds of systems engineering techniques
that could contribute to more reliable cartographic systems
Include those of precise system specification, technical
reviews, configuration management, maintainability and
reliability, quality assurance, human factors engineering,
software engineering, software verification and validation,
and production management. The remainder of this paper
will focus upon the techniques for systematically Increasing
a cartographic system's hardware and software availability
in the face of increasing design complexity for significant
levels of automation.

HARDWARE TECHNIQUES

Until around 1975, the generally accepted method of
increasing the availability of a computer was to provide a
duplicate system (Champine, 1978). This "stand-by" tech
nique was common, especially for batch processing systems.
In which punched cards were the primary method of data entry
and/or user interface. This method was expensive and cum
bersome and not very effective. It required the maintenance
of duplicate data bases, duplicate software libraries, and,
In some cases, additional staffing. In addition, where the
back-up and primary computers differed (such as different
manufacturers or different operating systems) the staff was
required to be Intimately familiar with more than one
system. This resulted In a duplication of effort and
decreased overall productivity. At about the same time, the
methods of using the computer had also begun to change.

During this period applications evolved from the batch
(punched card) oriented mode to an on-line environment.
System users began to interact directly with hardware and
software through terminals rather than key punch machines.
Some users began to use timesharing on large mainframe
computers, while others acquired dedicated minicomputers and
integrated them into their system designs. Powerful micro
computers are now available to perform most if not all of
the functions for which minicomputers were recently used at
a fraction of the cost. Similarly, the supermlni's of 1oday
are displacing mainframes for many applications.

600

These changes have had a major Impact upon the way
users have come to view their work. System failure In a
batch operation has little impact on its users If it can be
corrected In a few hours; but system failure in an Inter
active or real-time environment has a catastrophic Impact
and system failures once taken In stride are now considered
Intolerable. The upshot of this evolution to on-line
operations using mini and microcomputers Is to place far
greater demands upon system design regarding reliability and
the need to exploit the use of new technology to increase
overall system availability.

The primary method used to increase system availability
through hardware design Is by the use of redundant hardware
components (Katzman, 1977). Figure 4 shows the effect of
using redundant processors and disk subsystems to achieve a
system availability greater than those of the Individual
parallel components and the system availability of Figure 3.

A - 0.9 A = 0.9

A(Dual Processors) =0.99
A(Dual Disks) = 0.99

A(System) = (0.9)(1.0 - (1.0 - 0.9))(1.0 - (1.0 - 0.9)) = 0.8

Figure 4. Parallel Redundancy Increases Availability

This effect Is due to the definition of availability for
redundant parallel elements:

A(System) = 1 -TT(1 - A ,) (4)

When the availabilities of all elements are Identical, then

A(System) = l-(l-A) n (5)

This discussion of hardware redundancy Is, of course,
not new (Arsenault, 1980). The purpose Is to highlight the
basis for techniques currently being employed by a number of
computer hardware manufacturers to build commercially avail
able "fail-safe" systems. By trading off the competing
factors of reliability, complexity, performance, mainten
ance, and cost, designers are able to produce systems with
extremely high system availability values (Katzman, 1977).
The point to seriously consider, both by In-house system
implementors as well as vendors of cartographic systems, Is
that effective hardware redundancy techniques are available
for use In production system designs.

NEW TECHNOLOGY

Spec 1 a I-purpose, one-of-a-kind, and extremely expensive

601

hardware/software systems Incorporating ultra high relia
bility features have been In use for several years In
military and space applications. Much of this technology Is
becoming available to designers of commercial and sci
entific systems as low cost off-the-shelf items. The hard
ware includes the use of redundant minicomputers, micro
processors, and Integrated operating systems support for
automatic reconfiguration of system components In the event
of component failure. A major benefit of the architecture
of these computing systems Is the automatic data file recov
ery features which protect the integrity of the data base as
components fall (Bartlett, 1978).

One manufacturer that has led the field In this area Is
the Tandem Company of Cupertino, California (Bartlett,
1978). Tandem has had systems In the field for about seven
years now and has proven technology. The success of this
company appears to have started a trend with several new
companies specializing In this type of system. Stratus,
Inc. of Natick, Massachusetts, and, August Systems, of
Salem, Oregon have announced similar fauIt-toIerant
products (Boggs, 1981). Even the more established firms
are beginning to orient their products to fault-tolerant
designs. IBM has announced the development of fall-safe
features for Its processors with similar redundancy
characteristics to the Tandem. Briefly, these manufactures
use a combination of redundant hardware, with Integrated
software support, to eliminate system failure due to the
failure of any single major component, such as the central
processor, central memory, peripheral controllers, and disk
drives. Unlike stand-by mode designs, these systems fully
utilize all resources, such as the integrated modular
processors and shared memory. Therefore, the effective
system capacity is increased and available for primary
operations. The replacement of failed components can even be
performed with the system running. Data base integrity Is
protected during disk or controller failure by "mirroring,"
or automatically updating copies of, files. Access latency
for data retrievals is reduced by the system use of the
mirrored files for data base operations.

It appears that the trend toward commercially available
fauIt-toIerant systems Is a major development in the compu
ter industry. It is not too early for designers of digital
cartographic systems to make their needs known and Incorpor
ate this class of hardware Into production system designs.

SOFTWARE TECHNIQUES

One of the major pitfalls inherent In the planning and
implementation of computer-based systems is the tendency to
overlook or underestimate the software problem. Hardware is
tangible and can be seen, 'touched, moved about and Is asso
ciated with clear and complete spec!fIclat Ions. If a hard
ware component malfunctions, it is a relatively straightfor
ward process to trace the problem, isolate the malfunction-
Ing elements, and repair the equipment. As demonstrated
above, there exist concrete analytical techniques for
predicting the reliability of hardware elements that can be
applied to the design process.

602

Unfortunately, this is not the case for software which
Is almost never associated with clean and complete specifi
cations. In many ways a system description Is the tip of
the iceberg, with hardware components being clearly visable
and the much larger and more elusive software elements
concealed beneath the surface. The Issue of software
correctness and reliability has emerged as a serious problem
only within the last decade. Efforts have been made to
develop analytical techniques for appl Icatlon to software
reliability without much practical success; and unlike hard
ware, the use of redundancy Is not an effective way to
improve software reliability. The two main approaches that
have been pursued relate to either formal proofs of program
correctness, In the sense of mathematical theorem proving
using artificial Intelligence techniques, or quality
assurance, through the use of rigorous and systematic
software verification and validation procedures.

SOFTWARE ENGINEERING

The techniques that are emerging as being of practical
Importance In attacking the software problem have evolved
from the systematic testing approach, but relate to even
more fundamental Issues than testing alone. It has been
estimated that only about one-half of al I software errors
are due to programming mistakes (Champine, 1978). The re
maining errors are due to Inadequate specification of the
system requirements and noise Introduced In technical
communications between the Individuals performing the steps
In the software development process. The entire range of
software development activity Is revamped and made more
precise and systematic under the discipline of software
engineering (Mills, 1980). This relatively new approach
emphasizes specific structured techniques for controlling
the technical communications process and the complexity
Inherent throughout the software development steps of
analysis, specification, design, coding, testing, imple
mentation, and doc urn en tat I on. The buzz words for these
tools are composite (modular) design and top-down structured
programming. This approach Is proving effective because the
approach to containing the fundamental software problem
consists of the management and control of exponentially
Increasing complexity.

SOFTWARE DEVELOPMENT METHODOLOGY AND RELIABILITY

The software engineering approach contrasts sharply
with the historical method where most software is generated
when an enthusiastic programmer or other technical Individ
ual quickly dashes off a few lines of code In a flash of
Inspiration and then expands It Into a complete program as
more ideas appear. This kind of effort results in a patch
work of code which performs many functions using an unneces
sarily complex logic flow. It is nearly impossible to debug
the program completely and only the author is able to under
stand it. For this reason It is very difficult to maintain
through normal software changes and the unreliability grows
with each modification. The decision Is made through
default to try to eliminate the ensuing software bugs with

603

a long and difficult period of testing, rather than using
a brief but valuable Initial period to systematically
"design out" most errors before coding is started. Under
these circumstances, It Is Impossible to test for all the
errors generated. Even when development is carefully con
trolled, there Is an early point of diminishing return where
it is a waste of time to continue further testing due to the
large number of parameters Involved, the Inherent complexity
of the code, and the difficulty to simulate the "live data"
conditions of an operational environment. For this reason,
It has been said that, like wine, software improves with age
(Champlne, 1978).

BEYOND SOFTWARE ENGINEERING

Even the use of structured software engineering tech
niques, such as top-down design, stepwlse refinement, and
structured programming, appear to suffer from certain short
comings. Claims for their effectiveness in increasing
software quality and reliability are sometimes Inconsistent
among different organizations. It has been suggested that
these techniques are good, but are not sufficient and that
the organizational structure of the project has at least as
great an Impact upon the quality of software generated as
does the programming techniques employed (Walker, 1978).

This factor of organizational structure for software
development (the team approach) has been found to be the
single most important new method of reducing the remaining
50% of software errors not due to coding mistakes. The team
structure approach is a direct attack on the Increasing
complexity problem by formalizing precise communication
between the major tasks of transforming objectives Into
system requirements, requirements into a design, and the
design into accurate software code. Each successive trans
formation decomposes subsequent development activities into
deeper levels of detail revealing increased complexity. The
team organizational structure, If properly established,
increases the effectiveness of the necessarily detailed
technical communication between team members and reduces the
information loss and introduction of extraneous noise due
to the transformation process. The number of detailed rela
tionships requiring accurate transformation, and the level
of detail In the communications required, grows In propor
tion to Increasing system complexity (Walker, 1978).

Since most efforts are too large for one Individual
to accomplish, the team organizational structure becomes an
operating model of the software development process and is a
major tool for controlling communications among members and
ensuring a disciplined approach to software development.
Even If nothing else is achieved, however, a properly
structured team organization will ensure that (1) needed
communication will occur, (2) some degree of design activity
and problem solution will be used before software coding
begins, and (3) basic documentation will be produced. Fig
ure 5 depicts a software development team structure that has
been proposed for use in the Office of Aeronautical Charting
and Cartography, National Ocean Survey for all system devel
opment efforts.

604

Prelect Manage

Configuration
Manager

THE SOFTWARE DEVELOPMENT TEAM

The structure depicted in Figure 5 Is a variation on
the chief programmer team concept Introduced by Mills and
modified by Tausworthe (Tausworthe, 1979).

The project manager functions as the lead technical
authority, or "chief programmer," In addition to required
project management duties. Not shown on the chart is a
higher level manager who performs most of the traditional
project management functions concurrently for several of
these projects.

The configuration manager assists the project manager
to Insure that all activities are performed under the disci
plined software engineering approach outlined In the
official standards and procedures handbook. This handbook
is an Integral component of the project team concept and
serves as a basic standards reference for all team members
and all projects. The configuration manager also performs
the traditional configuration control function for the team.

The system design engineer assists the project manager
In all phases of the requirements definition, analysis, and
system design activities. The system design is produced
using top-down structured techniques and design
walkthroughs. Specific dellverables are produced out of
these tasks and are placed under Immediate configuration
control after acceptance by management.

The software engineer Is responsible for designing and
Implementing the software modules using structured program
ming techniques. As modules are added to the program
library, they are placed under configuration control. Subse
quent changes to these modules can then only be made through
the configuration management process which requires project
manager approval.

The test and integration engineer is responsible for
the development and execution of a comprehensive system test
plan in parallel with the design and programming efforts.
As modules become available for testing, they are exercised
against the plan and deficiencies noted. The test engineer
does not debug the module, but returns it to the -software

605

development library under configuration control so that the
programming group can correct the Identified deficiencies.

The systems support engineer performs the typical
systems programming function and Insures that the operating
system, data base management system, compilers, graphics
packages, etc. are properly Installed and operating.
Assistance Is provided to other team members for problems
experienced with the system hardware and vendor-supplied
software.

CONCLUSION

Rapid advances are being made In the area of systems
reliability that designers of cartographic systems should
exploit. These developments are occurlng In two primary
areas: (1) new ultra-reliable hardware systems Incorporating
built-in component redundancy using microprocessors and
minicomputers, and (2) advances In the way reliable software
can be developed using top-down structured techniques and
software development team concepts. The field of carto
graphic automation has reached the point of development that
requires the serious consideration of these new techniques.
Without the use of these or similar methods, the design and
development of truely effective cartographic production
systems could be significantly retarded.

REFERENCES

Arsenault, J. E. 1980, ed. B£_LUJ>lll±y and UalnljalHflJi.Ll.Lly
Qi. £l££±r£Jil£ .S_.y_.s±.e_in.s_, Computer Science Press, Rockvllle,
Mary land.

Bartlett, J. F. 1978, A "Nonstop" Operating Sy s tern :hLatt.all
I nter nat I ona I C.ojli_e.r_.ejl£.e fii System Sc 1 ences .

Boggs, D. W. 1981, Fault Tolerant Computer Enhances Control
System Reliability: Control Engineering. Vol. 28, NO. 10, pp
129-132.

Champlne, G. A. 1978, What Makes A System Reliable:
Vol. 24, NO. 9, pp 194-206.

Hal I, A. D. 1962, A Methodology fcj: Systems Engineering, Van
Nostrand Relnhold, New York.

Katzman, J. A. 1977, System Architecture for Nonstop
Comput I ng;Compcon f Feb. pp. 77-80.

Mills, H. D. 1980, Principles of Software Engineering: IBM
-Jj2Um.al, Vol. 19, NO. 4, pp 414-420.

Tausworthe, R. C. 1979, Standard I zed Devel ppment Q± Computgc
.Sfii ±XL3JL§. , Prentice Hall, Englewood Cllfts, New Jersey.

Walker, M. G. 1978, A Theory For Software Reliability:
, Vol. 24, NO. 9, pp 211-214.

606

