
A D A P T I V E G R I D S F O R G E O M E T R I C O P E R A T I O N S 
f M . R A N D O L P H F R A N K L I N , Electrical, Computer and Systems 

Engineering Department, Rensselaer Polytechnic Institute, 

Troy, New York, USA 

INTRODUCTION 

SPATIAL AND TOPOLOGICAL relationships are integral to cartography, and an 
efficient use of computer data structures is essential in automated cartogra

phy. A new data structure, the adaptive grid, is presented here. It allows the 
efficient determination of coincidence relationships, such as 'Which pairs of 
edges intesect?' and enclosure relationships like 'Which region contains this 
point?' A good reference for computer data structures is (Aho 1974). For 
cartographic data structures, see (Peucker 1975). Some other useful algorithms 
from the area of computational geometry are (Bentley 1979), (Bentley 1980), and 
(Dobkin 1979). 

DATA S T R U C T U R E 

The adaptive grid data structure (in 2-D) is based on a single level uniform grid 
superimposed on the data. For example, suppose that we are given N small 
straight line segments or edges scattered within a square of side one. (See Figure 
1, where N = 4). The grid has G by G cells (G = 3 in Figure 1), each of side B = 
I /G. Let L be a measure describing the edges' length, such as the average. The 
data structure consists of a set of ordered pairs of a cell number and an edge 
number, i.e., 

{(cell, edge)} 

Each pair represents an edge passing through a cell. For Figure 1, we obtain the 
following data structure: 

{(2,1), (1,1), (4,1), (2,2), (5,2), (4,3), (5,3), (6,3), (8,4)} 

This data structure bears a superficial resemblance to several others: unlike 
Warnock's hidden line algorithm (see Sutherland 1974), the adaptive grid does 
not clip an edge into several pieces if it passes through several cells. In the 
example, edge # 1 passes through cells # 2 , 1, and 4, but we merely obtain 3 
ordered pairs in the set. Unlike a tree (see Nievergelt 1974), or k-d tree (see 
Bentley 1975a, andWillard), it divides the data coordinate space evenly indepen-



ADAPTIVE GRIDS FOR GEOMETRIC OPERATIONS 161 

FIGURE 1. An adaptive grid superimposed 
on four edges. 

dently of the order in which the data occur. Unlike a quad tree (see Bentley 
1975b, and Finkel 1974) or octree (see Meagher 1982), the adaptive grid is one 
level, and does not subdivide in the regions where the data are denser. Although 
such a hierarchy is the most obvious 'improvement' to an adaptive grid, it will be 
shown later that if the data are reasonably distributed, then a hierarchy would 
not increase the speed. Further, such a hierarchy would make it harder to 
determine which cells a given edge passes through. 

When the adaptive grid is described as a set, the term is used precisely. The 
only operations to be performed on it are: 

1 Insert a new element, and 
1 Retrieve all the elements in some order so that they may be sorted, adjacent 

elements combined under certain circumstances, and a new set created. 

This gives a great freedom in implementing this abstract data structure. For 
example, on a microcomputer, the adaptive grid can be a sequential disk file, 
assuming that a file sorting routine exists. 

F I N D I N G I N T E R S E C T I O N S 

We will now see how to determine all the pairs of edges that intersect. The 
operations are as follows: 

1 Determine the optimal G, or resolution of the grid, from the statistics of the 
input edges. This will be described in more detail later, but letting G = I/L, is 
reasonable. Initialize an empty grid data structure for this G. 

2 Make a single sequential pass through the input edges. For each edge, deter
mine which grid cells it passes through, and for each such cell, insert a (cell, 
edge) pair into the grid data structure. 

Since determining exactly which cells an edge passes through requires an 
extension of the Bresenham algorithm (see Foley 1982), which is a little 
complicated, in practice, an enclosing box is placed around the edge. The edge 
is considered to pass through all cells in this box. Considering an edge to be in 



162 162 WM R A N D O L P H FRANKLIN 

some extra cells speeds up this section and slows down the pair by pair 
comparison in section 5 below. 

3 Retrieve the (cell, edge) pairs and sort them by cell number. 
4 Make a sequential pass through the sorted list. For each cell mentioned in the 

list, determine all the edges that pass through that cell, and combine them into 
a set. Now we have a new set: 

{(cell, {edge, edge, ...})} 

with one element for each cell that has at least one edge passing through it. 
Each element has the cell number and a smaller set of the edges that pass 
through that cell. Continuing the example of Figure 1, we have at this stage: 

{(1,{1} ), 

(2, {1,2}), 
(4, {1>3}), 

(6, {3} ), 

(8, {4} )} 

Note that since cells 3, 7, and 9 have no edges passing through them, they do 
not appear at all here. An empty cell does not use even one word of storage. 

5 For each element of this set, i.e., for each cell with at least one edge passing 
through it, test all the edges in the cell pair by pair to determine which 
intersect. Since two edges that intersect must do so in some cell, and so must 
appear together in that cell, this will find all intersections. In the example, 
edges 1 and 3 both pass through cell 4, but an exact test shows that they do not 
intersect. On the other hand, cell 5 contains edges 2 and 3, and they do 
intersect. 

6 If a pair of edges that do intersect appear together in more than one cell, then 
that intersection will be reported for each such cell. To avoid this duplication, 
when an intersection is found, it can be ignored unless it falls in the current 
cell. For this strategy to work, the cells must partition the space exactly, i.e., 
each point must fall in exactly one cell. This can be satisfied by considering 
each vertical grid line between two cells to be inside its right neighbor, and 
considering each horizontal grid line between two grid cells to be inside its 
upper neighbor. 

TIMING 

This method is useful only because it executes efficiently. We will now analyze 
the time and determine the optimal G. 

Let U = the average number of cells that each edge falls in. Then, approx
imately 

U= 1 + 2LG 

However, assuming that we place a box around the edge and count all cells in 
that, as described above, we will get a higher figure: 

since BG = 1 



ADAPTIVE GRIDS FOR G E O M E T R I C OPERATIONS 163 

We will use this higher number since it is more conservative and does not affect 
the rate of growth of the final time. Next, V = total number of (cell, edge) pairs 

= NU 

= 7V(i + LG)2 

Then, W = the average number of edges in each cell 

= VVG2 

= N(B + L)2 

For the execution times, we will use the notation θ(x), which means proportional 
to x, as x increases. 

Let Ti = the time to calculate the (cell, edge) pairs 

= θ(V) 

and T2= the time to determine the intersections 

= e(G2w2) 

since in each cell, each edge must be tested against each other edge. 
So T = total time 

= T 1 + T2 
= θ(N(1 + LG) + NZG2(B + L)4) 

Now, if we let B = 6(L), i.e., the grid size is proportional to the edge length, we 
get 

T=Q(N+ S) 
where 

S = N2L2 /4 

since with 6 notation, which considers only the rate of growth, constant multi
pliers can be added freely. But S is approximately the expected number of edge 
intesections for a given N and L. Since a routine that finds all edge intersections 
must examine each edge and each intersection at least once, setting B = cL, for 
any c, gives an optimal time, up to a constant factor. The actual c which 
minimizes T should be determined heuristically, since it depends on the relative 
speeds of various parts of the program, and this may depend on the model of the 
computer. 

We sometimes have even more freedom to select B, that is, there may be a 
range of functions for B that give the same minimum time, depending on the 
dependency of L on N as the problems get bigger. We can use this extra freedom 
to also minimize space if we wish. 

It might be objected that the execution time for any cell depends on the average 
of the square of the number of edges in that cell, whereas we have used the square 
of the average. However, if the edges are independently and identically distri
buted, then each edge has the same independent probability of passing through 
any given cell. Thus the number of edges in a given cell is Poisson distributed, so 
the square of the mean equals the mean of the square. 



164 WM RANDOLPH FRANKLIN 

IMPLEMENTATION 
The adaptive grid has been implemented and tested in various applications. First, 
the edge intersection algorithm described above was implemented as a Flecs 
Fortran preprocessor (see Beyer 1975) program on a Prime midi-computer. The 
largest example had 50,000 edges and 47,222 intersections. See table I for a list 

of 
execution times. 

N 

1 0 0 

300 
1 0 0 0 

1 0 0 0 

1 0 0 0 

3 0 0 0 

3 0 0 0 

3 0 0 0 

1 0 0 0 0 

1 0 0 0 0 

100000 

3 0 0 0 0 

3 0 0 0 0 

3 0 0 0 0 

5 0 0 0 0 

5 0 0 0 0 

5 0 0 0 0 

Table 1 
L 

.100 

.100 

.010 

.030 

.100 

.010 

.030 

.100 

.003 

.010 

.030 

.001 

.003 

.010 

.001 

.003 

.010 

EXECUTION TIMES FOR EDGE INTERSECTIONS 

B 

.100 

.100 

.010 

.030 

.100 

.010 

.030 

.100 

.010 

.010 

.030 

.010 

.010 

.010 

.010 

.010 

.010 

S 

'5 
M3 

11 

163 
1720 

149 
1487 

15656 
156 

1813 
16633 

149 
'797 

16859 

315 
4953 

47222 

T1 

.17 

•54 
'•73 
1.72 

1.71 

5.24 
5.41 

5-'9 
16.36 
17.38 
17.68 

48.33 
48.46 
52.85 

77-71 
79.49 
86.23 

T2 T 

.26 .43 

•93 
3.62 
2.54 
4.46 
8.05 
8.82 

27-93 
16.45 
26.02 

44.78 

43-95 
54.21 

98.93 

75-75 
92.37 

278.49 

1.47 

5-35 
4.25 
6.18 

13.29 
14.22 

33.12 

32.82 

43.40 

67-45 
92.28 

102.66 

151.78 

153.46 
171.87 

364.72 

Column Labels 
N Number of edges 
L Average length of edges, assuming screen is 1 by 1 
B Length of side of each grid cell 
S Number of intersections found 
T1 CPU time (sec.) to put edges in cells 
T2 CPU time to find the intersections among the edges 
T Total CPU time 

From the table, we see that this program takes about (N + S)/300 CPU seconds 
to execute, even for the largest case. Some other facts about the largest case tested 
are: 98,753 (cell, edge) pairs, and 11,534 duplicate intersections. 

Figure 2 shows the case with N = 1000, G = 10, L = o. 1 approximately. In 
these examples, the coordinates of the edges are generated with a pseudo-random 
number generator. Now, manufacturer supplied random number generators are 
all linear congruential which has the effect that if you pair up successive random 
numbers, then the resulting 2-D points will fall on a comparatively small number 
of parallel lines. This does not mean that these edges will be parallel if a linear 
congruential generator is used since the random numbers are used for x1, y 1, and 
the angle of inclination. Still, it is better to use a non-linear generator. 

The adaptive grid was next used in a haloed line program designed and 
implemented by Varol Akman (see Akman 1981, and Franklin 1980). A haloed 
line drawing is a means of displaying a 3-D wire frame model (i.e., edges but not 
faces) of an object with front lines cutting gaps in read lines where they cross. 
This was tested on scenes with over 10,000 edges. It can process such a scene in 
about 10 minutes on a Prime, depending on the edges' lengths. 



ADAPTIVE GRIDS FOR GEOMETRIC OPERATIONS 165 

FIGURE 2. 1000 intersecting edges. 

The Spheres program (see Franklin 1981), is a third test. Here spheres are 
projected on top of one another. A case of ten thousand spheres of radius 0.02, 
overlaid on the average 10 deep through the scene, could be processed in 6.4 
seconds. Here not only the intersections were determined, but also the visible 
segments of each sphere's perimeter were found. 

Finally, the adaptive grid is an essential part of the simplified map overlay 
algorithm (see Franklin 1983), currently under implementation. 

T E S T I N G W H E T H E R A P O I N T IS IN A P O L Y G O N 

The adaptive grid can also be used to test whether a polygon contains a point. If 
we preprocess the polygon first, this method is very efficient even if the polygon 
has many edges. The execution time per point depends on the depth complexity 
of the polygon, i.e., the average number of edges that a random scan line would 
cut. The total number of edges has no effect on the time. 

This method is an extension of the method where a semi-infinite ray is 



l66 TO RANDOLPH FRANKLIN 

FIGURE 3. Point inpolygon testing. 

extended from the point in some direction to infinity. The point is in the polygon 
if and only if the ray cuts an odd number of edges. The problem lies in testing the 
ray against every edge. 

To speed this up, we will use a one-dimensional version of the adaptive grid on 
a line. The line is divided into i-D grid cells and then the polygon's edges are 
projected onto the line. Now we know which edges fall into each cell. For 
example, see Figure 3, where a polygon with N = 13 edges is projected onto a 
i-D grid with G ~ 4 cells. After all the edges in each cell are collected, we know, 
for example, that cell #2 has edges #2 , 3, 9, and 10. Now, consider point P: 
since it also projects into cell #2 , a ray running vertically up from it can only 
intersect those 4 edges, so we need only test it against them. The execution time is 
the average number of edges per cell. As the cell size becomes smaller than the 
edge size, this number has the polygon's depth complexity as a lower bound. 

L O C A T I N G A P O I N T IN A P L A N A R G R A P H 

The obvious extension of the above problem is to take a planar graph and a point, 
P, and to determine which polygon of the graph contains P. This can be done by 
testing P in turn against each polygon in turn, unless one polygon completely 
contains another, but that is slow. A more efficient method is this: 

1 Extend a ray up from P. 
2 Record all the edges that it crosses, along with those edges' neighboring 

polygons. 
3 Sort those edges by their ray crossings from P. 
4 Finally, P is contained in the lower polygonal neighbor of the closest crossing 

edge to P. 



ADAPTIVE GRIDS FOR GEOMETRIC OPERATIONS 167 

As before, we put the planar graph's edges into a 1-D adaptive grid and test the 
ray against only those edges in the same cell as P's projection. 

S U M M A R Y 

Techniques from computational geometry have been shown, both by theoretical 
analysis and by implementation, to lead to more efficient means of solving 
certain common operations in automated cartography. 

A C K N O W L E D G E M E N T 

This material is based upon work supported by the National Science Foundation 
under Grant No. ECS 80-21504. 

REFERENCES 

AHO, A.v., J.E. HOPCROFT, and J.D. ULLMAN. 1974. The design and analysis of computer algorithms, 

Addison-Wesley, Reading, Mass. 
AKMAN, V. 1981. HALO - A computer graphics program for efficiently obtaining the haloed line 

drawings of computer aided design models of wire-frame objects, User's manual and Program 
logic manual, Rensselaer Polytechnic Institute, Image Processing Lab. 

BENTLEY, J.L. 1975a. Multidimensional binary search trees used for associative searching, Comm. 
ACM 18(9), pp. 509- 517. 

BENTLEY, J.L. and D.F. STAN AT. 1975b. Analysis of range searches in quad trees, Information 
Processing Letters, 3(6), pp. 170-173. 

BENTLEY, J.L. and T.A. OTTMANN. 1979. Algorithms for reporting and counting geometric intersec
tions, IEEE Trans, on Computers, C-28(9), PP- 643—647. 

BENTLEY, J.L. and D. WOOD. 1980. An optimal worst case algorithm for reporting intersections of 

rectangles, IEEE Trans, on Computers, 0-29(7), pp. 571-576. 
BEYER, T. 1975. Flees: User's manual, Dept. of Computer Science, University of Oregon. 
DOBKIN, D. and R.J. LIPTON. 1976. Multidimensional searching problems, SIAM J. Comput., 5(2), 

pp. 181-186. 
FINKEL, R.A. and J.L. BENTLEY. 1974. Quadtrees: a data structure for retrieval on composite key, Acta 

Inform., 4, pp. 1-9. 
FOLEY, J.D. and A. VAN DAM. 1982. Fundamentals of interactive computer graphics, Addison-Wesley, 

Reading, Mass. 
FRANKLIN, w.R. 1980. Efficiently computing the haloed line effect for hidden-line elimination, 

Rensselaer Polytechnic Institute, Image Processing Lab, IPL-81-004. 
1981. An exact hidden sphere algorithm that operates in linear time, Computer Graphics and 

Image Processing, 15, pp. 364-379. 
1983. A simplified map overlay algorithm, presented at Harvard Computer Graphics Confer

ence, Cambridge, Mass., August 1983. 
MEAGHER, D.j. 1982. The octree encoding method for efficient solid modelling, Ph.D. thesis, 

Rensselaer Polytechnic Institute. 
NIEVERGELT, J. 1974. Binary search trees and file organization, A CM Computing Surveys, 6(3), pp. 

195-207. 
PEUCKER, T.K., and N. CHRISMAN. 1975. Cartographic data structures, The American Cartographer, 

2(1), pp. 55-69. 
SUTHERLAND, I .E., R.F. SPROULL, and R.A. scHUMACKER. 1974. A characterization of ten hidden 

surface algorithms, Computing Surveys, 6(1), pp. 1-55. 
WILLARD, D.E. Informative abstract: new data structures for orthogonal queries, Harvard University. 




