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SUMMARY 

A METHOD for assembling and managing global terrain data is presented, the 
Geodesic Elevation Model. Derived from concepts in geometry, geogra

phy, geodesy, applied mathematics and computer science, GEM is designed to 
digitally archive and access measurements of points given in latitude, longitude 
and elevation from any source, by embedding them in a regular, polyhedral data 
structure. To do this, the model recursively tessellates a regular solid, initially an 
octahedron, into equilateral triangular facets. Spot measurements are encoded 
by successive approximation, mapping a given geodetic location to proximal 
centroids of nested triangles. As encoding proceeds, a new vertex appears at the 
center of each existing facet; an elevation code for it is entered in a linear tree, an 
estimated coordinate which locally wrinkles the polyhedron. The more times 
this takes place, the better is the approximation: each such step of encoding 
triples the number of facets, and diminishes horizontal and vertical error by the 
square root of three. As the structure is a regular geodesic grid, its horizontal 
coordinates are implicit by their ordering. Elevations alone are stored, using 
1-bit flags quantizing height changes, triangulating the enclosed terrain with less 
than one bit of data per facet. Reconstruction of the data yields estimates of 
longitude, latitude and elevation anywhere on the planet, along with the error of 
estimate. Consequently, the slope, size and aspect of facets can be derived at any 
level of precision required, up to the limit of detail encoded for their neighbor
hoods. Beyond this, if desired, fictitious detail can be fractally synthesized, 
landforms resembling features above them in the hierarchy, smoothing the 
surface simultaneously. Local regions (small initial facets) can be encoded and 
stored independently, then subsequently merged at will to assemble larger 
terrain models. As measurements accumulate in a GEM database, superfluous and 
erroneous data are rejected with increasing frequency, due to the self-calibrating 
nature of the ensemble. Were sources of data and motivation sufficient, the relief 
of the entire Earth could be uniformly encoded in GEM format at a horizontal 
resolution of less than one kilometer, with a vertical precision of several meters, 
on a single disk volume. 
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FIRST 

The study of the Earth and its spatial properties now encompasses many disci
plines. Those stemming from roots in classical geography include geodesy, 
surveying, cartography, geomorphology and hydrology, now augmented by 
photogrammetry and remote sensing. Despite their common origins and subject 
matter, they have diverged in their focus, methodologies, literature and empiri
cal content. Nevertheless, they remain necessary adjuncts to one another in 
describing the shape of our planet and the relief of its surface. 

Despite persisting political rhetoric emphasizing global territorial, ecological, 
economic and ideological divisions, we live on one planet, a world which may be 
regarded as an organic entity. The wholeness of the Earth - self-evident to many 
non-western cultures - largely escapes the western culture of science, even the 
so-called earth sciences. This peculiar myopia is reflected both by our discipli
nary specialization and by territorial concerns. 

This is not to assert that science is ignorant or unmindful of the form of our 
planet. Were this the case, military frontiers would still be boundaries on maps 
instead of trajectories between points over the horizon. The imperatives of 
strategic warfare have both demanded and generated accurate models of the 
shape of the Earth. Digital methods, aerospace technology and geodetic models 
now enable strategists to calculate distances between launchers and targets half a 
world away with deadly precision. But if asked to identify which major cities 
would suffer inundation should melting icecaps cause the oceans to swell by one 
percent, few earth scientists could do more than guess or crudely approximate. 
There are too many floodplains and too little certainty of their shapes. 

The aforementioned scenario could develop over the next century or so, and 
its probability may have been increased by the consequences of human activity, 
amplified through technology. Ironically, it is only through using technology 
that we have any hope of comprehending the nature of the problems we have 
wrought for the planet. But assembling relevant data in a holistic, globally useful 
framework - a seemingly obvious necessity - is rarely attempted, and such 
efforts are often frustrated by parochialism, inconsistencies and errors, not to 
mention inadequate models of the structure of the planet and the processes at 
work within, on and above its surface. 

Digital Terrain Modelling 
Identifying the extent of floodplains is just one of many cartographic and 
analytical tasks facilitated by digital terrain models (DTMS). Numeric representa
tions of surfaces are becoming increasingly important in civil engineering, re
gional analysis, military operations and topographic mapping. Over the past 
fifteen years or so, a number of data structures and formats have been developed 
to encode topographic surfaces (Mark 1977), some of which are exhaustive 
enumerations of elevations throughout a region (or triangulations of 'surface-
specific' points), others of which are mathematical (usually coefficients of 
polynomial or trigonometric series, approximating relief as smooth surfaces). 

Perhaps the purest example of a mathematical terrain model, and in many 
ways closest in spirit to the model presented in this report, was formulated 
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between 1908 and 1922 by Prey (1968). In that model, the shape of the earth was 
represented by spherical harmonic equations to order sixteen. To have refined 
his model further would have exceeded the computational power and demanded 
better data than were available in Prey's time. 

Since then, not only has the development of computing technology vastly 
increased our command of techniques, this revolution has unloosed an avalanche 
of spatial data, burying our abilities to catalog, verify, analyze and apply it. The 
work reported here is, like Prey's effort, an attempt to bring some unity to the 
chaos of DTM technology and data. 

Gridded Terrain Models 
The most common way to represent geographic data is to accumulate observed 
or interpolated point data into fixed rectangular grids or irregular triangular 
meshes. The former type are by far the dominant form for DTM data, as they can 
be compiled nearly automatically using analytic stereoplotters to scan stereo 
pairs of aerial photos, correlating features to compute elevation profiles as a 
dense raster of points, DTMS produced by such machines (after resampling and 
editing) are publicly distributed by the U.S. Geological Survey; these are avail
able for a growing number of 7.5-minute quadrangles, representing their terrain 
with about 170,000 grid points spaced at 30-meter intervals. Quality control of 
such data is problematic, as the accuracy of the output from the analytic stereo-
plotters varies with terrain type and land cover, and in particular is affected by 
the presence of water bodies and man-made structures. 

Triangulated Irregular Networks 
The principal alternative to rectangular arrays for storing DTM data is the 
Triangular Irregular Network (Peucker et al 1977; Males, 1978; Gold 1978), or 
TIN. In this model, elevations are digitized from maps manually, selected to 
represent critical features of the surfaces to be encoded, such as peaks, pits, 
passes and breaks in slope. These points are then triangulated, either manually or 
analytically (Fowler and Little 1979), yielding a varying network of triangular 
facets fitting the terrain, containing most of the information about the surface 
with relatively little input data. While some thought must be given to selecting 
and connecting the initial spot elevations, the resulting model is more compact 
and useful than gridded DTMS, principally because of the properties of triangles 
and the networks they form. The main drawback to TINS is the complexity of the 
data structures and programming strategies needed to manage and apply them. 
Furthermore, while all implementations of TINS are conceptually equivalent, 
their structures differ sufficiently to make data transfer from one system to 
another difficult. Transferability issues also arise for gridded DTMS, but usually 
due to differing data formats (ordering and character encoding conventions) 
rather than because of any fundamental differences in data structure. 

Accuracy Issues 
Despite their different constructions, there are some common aspects to and 
shortcomings of the two models just outlined. Their principal similarity is that 



GEODESIC MODELLING OF PLANETARY RELIEF 191 

both grids and TINS are designed to encode planar coordinates for relatively small 
areas. That is, the horizontal coordinates (which are explicit in TINS but implicit 
in grids) are almost always cartesian, and scaled to whatever map projection was 
used to compile the source maps or photographs from which they are digitized. 
In too many cases, the projections are not documented, leading to difficulty 
when adjacent terrain models are merged or when particular ones are modified. 

Another set of limitations relate to the accuracy of DTM data. Gridded data 
have an implicit limit to horizontal precision (its Nyquist frequency), which is 
nominally uniform throughout the grid. In practice, however, gridded surfaces 
may be produced by interpolation procedures from scattered observations. The 
resultant precision is thus variable, but its magnitudes are hidden, unless one has 
access to the source data. 

Vertical precision, likewise, may or may not be uniform throughout a grid, 
depending on the methods and sources used to compile it. Moreover, a structural 
interdependence exists between it and horizontal precision (sampling density), 
demonstrated in Dutton ( 198 3). If grid cells are large they may contain consider
able amounts of height variation, so that the value assigned to each is only an 
estimate (high, low or average) of heights within the cell. To ascribe high 
precision to the elevations assigned to grossly-sampled cells is thus rather point
less unless the terrain is generally smooth. Therefore, the amount of memory 
needed to represent the height of a grid cell grows larger as sampling density 
increases. Specifically, the number of bits needed to encode each cell is pro
portional to the logarithm of the number of cells. 

Precision in TINS in subject to similar constraints, as each control point may 
vary in how well it represents conditions in its neighborhood. In general, 
precision will vary inversely with the spacing of observations, but need not (and 
probably will not) be the same at each control point, due to source errors, 
variations in operators' performances and triangulation decisions. While each 
coordinate and face in a TIN can be labelled to document its presumed precision, 
this is never done in practice. To do so would erase much of the storage efficiency 
enjoyed by TINS. 

In editing gridded surfaces and TINS, gross errors can be detected automati
cally by algorithms which identify drastic changes in slope or linear artifacts. 
Visual inspection is still the best way to achieve quality control, but only errors 
that result in discernible patterns are likely to be rectified. The overall fidelity of 
the data is difficult to assess without detailed information of how the source data 
were collected, edited, reproduced and (sometimes) interpolated. The datasets 
themselves are completely indifferent to the quality of the information they 
contain, and this implies that they will usually contain errors which will persist 
without notice, but unfortunately not without consequence, indefinitely into 
the future. 

F O R M 

In the following sections, a structure for encoding terrain is presented which 
differs significantly from both grids and TINS in both the vertical and horizontal 
components. Like a grid, elevations alone are explicitly encoded, in a regular 
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Table 1 COMPARISON OF GRID, TIN AND GEM STRUCTURE AND PROPERTIES 

DTM: 

BASIS 
FORM 

TOPOLOGY 

SAMPLING 

PRECISION 

CONTENTS 

STRUCTURE 

STORAGE/CELL 

STORAGE/MAP 

ACCURACY 

COMPLEXITY 

COVERAGE 

EDITING 

GRID 

Raster 
Cartesian 
Implicit 2-d 
Uniform 
Fixed 
Elevations 
Array 
medium 
high 
standardized 
low 
local 
tedious 

TIN 

Landforms 
Triangulated 
Explicit 2-d 
Irregular 
Variable 
x,y,z, pointers 
linked lists 
high 
medium 
uncertain 
high 
regional 
complex 

GEM 

Planet 
Polyhedral 
Implicit 3-d 
Hierarchical 
Convergent 
Diff. Codes 
dual trees 
low 
low 
verifiable 
medium 
global 
automatic 

mesh; like a TIN, all cells are triangles with identifiable faces, vertices and edges. 
Unlike either, however, the model is designed to be planetary in scope, capable 
of accepting observations from any location on earth (or whatever planet it 
represents), storing them in geodetic (spherical) coordinates. Furthermore, if 
observations are properly labelled as to their horizontal and vertical precision, 
the model will encode each to the appropriate tolerance and no further. When 
they are sufficiently in error, input data can be rejected by the model automati
cally. These and other useful properties are achieved with surprising economy; 
each facet encoded requires storage of lea than one bit of data, making the model 
at least an order of magnitude more compact than either grids or TINS. This 
method of encoding planetary relief has been named Geodesic Elevation Model
ling (GEM). Some of its properties are summarized in Table 1, in comparison with 
gridded and triangulated data structures. 

Geodesic Tesselation 
A geodesic structure can be generated from a polyhedron (usually an 
icosahedron1 or portion of one) by regularly subdividing it in several well-
defined ways. In two of these methods, the so-called 'triacon' and 'alternate' 
breakdowns (Popko, 1968), a higher-frequency grid of triangles is created by 
connecting either the centroids and vertices of triangles (triacon, Figure 1b) or 
their edge midpoints (alternate, Figure 1a). The two procedures yield 60 and 80 
triangular facets, respectively, from the original 20 faces of the icosahedron. 
Each of these new triangles can subsequently be broken down in the same 
manner, each time tripling or quadrupling the number of faces in the structure. 
Eventually, the triangles grow quite small and the figure begins to closely 
approximate a sphere. Ten orders of subdivision or less is about the limit for 
engineered structures; edge members grow quite short, yet of slightly (but 
critically) differing length, posing tolerance problems in manufacturing them 
and their connectors. Computational models, however, can be made of such 
structures without encountering such problems, at least to one part in several 
million. 
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Polyhedral Projection 
While geodesic structures are normally regarded as minimal space-enclosing 
ones, they can also be thought of as models of surfaces which are, topologically 
speaking, spheres. Fuller and Sadao (1982) have published a 'globe' which 
represents the earth as an icosahedron, the so-called 'Dymaxion' projection. 
Although ingenious (it can be cut and folded from a single sheet of paper) and 
informative (it offers many untapped possibilities for thematic mapping), the 
Dymaxion projection is not widely used, being regarded by mapping profession
als as a cartographic curiosity. While the Dymaxion Map distributes its projec
tion errors predictably, its distortions are concentrated at vertices and arbitrarily 
located, depending on the orientation of the icosahedron with respect to the 
earth's axes. Where accuracy must be predictable, then, the Dymaxion projec
tion is not the one of choice. 

These limitations recede, however, as one proceeds to subdivide the ico
sahedron into smaller triangles. With each successive division edge lengths are 

FIGURE 1b. The 'triacon'geodesic hierarchy. 
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reduced by half (for the alternate breakdown) or by the square root of three 
(triacon breakdown) and the polyhedron grows more spherical. Its facets lie 
closer to sea level and projection distortions relax. After only five (alternate) 
breakdowns, the original twenty icosa faces blossom into 20,480, with vertices 
arrayed 2.25 degrees apart. This rate of expansion can be continued to make the 
polyhedron indistinguishable from a sphere for any cartographic purpose. 

Fuller uses the icosahedron as the basis for most of his geodesic structures, a 
choice which is both theoretically and pragmatically justified for engineering 
purposes. But despite the appeal of icosahedral forms for space-frame structures, 
they may not in fact provide an equally optimum basis for modelling geodetic 
relief. The facets of an icosahedron are tilted with respect to the equator and 
prime meridian, complicating computations of their geodetic coordinates. 

An octahedron (having 8 triangular faces, 6 vertices and 12 edges), on the other 
hand, can be aligned to cardinal points, and this property leads us to regard it as a 
more appropriate polyhedron upon which to structure a geodesic data base. If 
oriented so that the polar axis passes through two opposite vertices and so that 
the prime meridian and the equator intersect at another vertex, the octahedral 
kernal acquires certain useful properties. First, all 'baselines' of the initial facets 
and their subdivisions arc parallel to the equator. Furthermore, the difference in 
latitude or longitude between vertices is divided by three with every pair of 
subdivisions. This yields an isometric graticule which grows finer with each 
breakdown, three sets of'standard parallels', two of which are oblique. Each face 
is semi-uniquely defined by the three parallels which intersect about it (two such 
faces are formed at antipodes). One potential disadvantage, however, is that the 
shape of facets will vary from nearly equilateral (near octahedron face centers) to 
right spherical triangles (at octa vertices), and consequently their areas will 
differ. The size and shape of any facet can always be computed, and in any case 
their variation does not make the model any less useful for storage and retrieval 
of elevation data. 

FEATURES 

In the following sections, one implementation of a Geodesic Elevation Model is 
described. This model is based on the Triacon Breakdown of an Octahedron, 
ignoring other geometries, but not dismissing them as inappropriate. Were other 
breakdowns of other figures to be employed, the logic of the model would be 
very similar; certain parameters (such as the rate at which facets multiply) and 
data structures (memory addressing strategies) would be altered, and certain 
convenient properties might be forsaken. 
Like any digital terrain model, GEM has three major related elements: 

1 Horizontal Organization 
2 Vertical Encoding 
3 Data Structure 

To these might be added a fourth element, not always explicit in DTMS, error 
estimation and control, GEM'S horizontal organization is that of the octahedral 



GEODESIC MODELLING OF PLANETARY RELIEF ICJJ 

Table 1 'TRIOCTACON' TESSELLATION OF A SPHERE WITH A RADIUS OF 4000 MII.ES 

LEVEL NO FACES NO POINTS NO EDGES EDGE LEN FACE AREA VERT ERR. 

I 

2 

3 
4 
5 
6 
7 
8 
9 
10 

11 

12 

8 

24 

72 
216 

648 
1944 

5832 

17496 

52488 

157464 

472392 
1417176 

6 

M 

38 
110 

326 

974 
2918 

8750 

26246 

78734 
236198 

708590 

12 

36 
108 

324 
972 

2916 

8748 

26244 

78732 
236196 

708588 

2125764 

6531.969 

4046.708 

2390.866 

1390.952 

805.109 

465.224 

268.673 

I55-I33 
89.569 

51.713 
29.857 

17.238 

18475188 

7090952 

2475205 
83777° 
280679 

93718 

31257 
10421 

3474 
115 S 

386 
129 

1952.134 

634.494 

211.091 

70.350 

23-449 
7.817 

2.605 

0.869 

0.290 

0.097 

0.032 

O.O11 

triacon breakdown, a regular tessellation which, like a raster-encoded image, 
needs no horizontal coordinates: location is implied by position in the data 
structure. The two alternating hierarchies of the triacon provide a triangular 
matrix of control points regularly arrayed across the surface of the planet. 
Consequently, only vertical information need be contained in a GEM file, en
coded as bit-flags which signal the elevation change at each control point. The 
flags describe the direction of elevation change, but not its magnitude. The 
amount of vertical movement is, analogously to horizontal offsets, given by the 
position (depth) of facets in the hierarchy. This relatively unexplored method of 
elevation modelling has been named DEPTH, for 'Difference-Encoded Polyno
mial Terrain Hierarchy' (Dutton, 1983). Its effect is to approximate elevations 
vertically to a similar extent that locations are approximated by triangular 
breakdowns. Each level of a DEPTH hierarchy consequently encodes more con
trol points with greater precision than the levels above it. Table 2 enumerates this 
hierarchical progression to twelve levels, illustrating the asymptotic approxima
tion of a sphere of Earth radius starting from an octahedron fitted around it. This 
series of breakdowns converges rapidly. Its faces multiply by powers of three, 
reducing the triangles at the 12th level to less than 130 square miles apiece. By this 
level, vertical error is such that the center of each triangle is about 50 feet from the 
spherical surface. As implemented in GEM, however, the rate of spherical con
vergence is reduced from a ratio of three to the square root of three. 

GEM'S archival and working data structure represents vertices as two parallel 
sequences of levels in dual nonary trees. In each hierarchy every non-terminal 
triangle divides into nine, each with one third the edge length of its parent. 
Because all descendant nodes are represented in the tree, there is no need for 
pointers; the tree is laid out as a series of arrays, each three times (more or less) 
longer than the last. Access to values is then through computing an address from 
the coordinates of a centroid and its depth in the tree. Similar data structures for 
quadtree hierarchies are in use, sometimes called 'linear trees' (Gargantini 1982). 
In the absence of list pointers, all operations on such structures proceed sequen
tially, top-down. 

http://mii.es
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Horizontal Encoding 
GEM'S triacon grid has the useful property that centroids of triangles mark 
elevation nodes, which then serve as vertices for triangles in the next lower level. 
Every terrestrial location can be approximated within epsilon distance units by a 
specific sequence of triangulations converging about it. The primary facet can be 
one of the initial polyhedron, or one of its divided facets. In either case, the same 
process is used to continue breakdown. The procedure generates a series of 
partially or completely nested triangles, the numbering of which provides both a 
geocode and a key for memory addressing, as well as the vertex coordinates of 
each triangle in turn. 

To characterize the recursive strategy of approximating locations via succes
sive triangulations, the term trilocatwn has been coined. Use of this neologism 
will simplify subsequent discussions, as should its syntactic variations, such as 
trilocate, trilocated and trifocal. Computations for trilocating can be very simple, 
due to the regularity of the geodesic structure. Algorithmically, to trilocate point 
[pq], given that it is bounded by vertices [p1,p2,p}], perform: 

PROCEDURE TRILOC (Real: pq,p1 ,p2,p3,pmew,p2new,p3new,center,epsilon) 
; Converges a triangle around a point to a new one one-third as big; 
; Vertices are pairs of planar or spherical coordinates. 
; pq :: = point to be located; (p1,p2,p3) :: = current vertices; 
; (pmew,p2new,p3new) ::= returned convergent vertices; 
; center :: = centroid of new triangle; epsilon :: = error tolerance; 

BEGIN 

Determine squared distance from [p1] to [p2] 
If less than [epsilon] squared then return; we're close enough. 
Determine squared distances from [pq] to [p1], [p2] and [p3] 
Sort them, ordering points as [pnear], [pmid] and [pfar] 
Compute vertices of convergent triangle containing [pq]: 

[pinew] :: = [p1+ p2 + p3]/3; centroid of current triad 
[p2new] :: = [pnear]; closest old vertex 
[p3new] :: = [pnear] + [pmid] — [p1 new]; centroid of nearest neighbor 
[center] : : = [pinew + p2new + p3new]/3 ; best estimate of all 

END. 

Each time TRILOC is called, the edge length of resultant triangles grows smaller 
by the square root of three. This creates an alternating sequence of triangles, in 
which every level is fully contained within the level two steps above it, and has 
nine times as many triangles, each with one-third the edge length. This pattern of 
breakdown is shown in Figure 1b, with odd-numbered breakdowns drawn with 
bold lines. The trilocation procedure is diagrammed in Figure 2, showing the 
approximation of a location in six steps. Note that while each trilocation gener
ates bounding vertices, it is the center of that triangle which marks where vertical 
information is encoded at that level. Figure 3 illustrates the initial polyhedral 
form of the GEM 'trioctacon' (triacon breakdown of an octahedron) structure. 
Compare it with Figure 2 to imagine how trilocation generates an alternating 
sequence of subfacets from the triangles of the trioctacon. 
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Vertical Encoding 
Considered three-dimensionally, the two alternating triacon grids can be re
garded as constituting a pair of concentric polyhedra. The odd levels, those of the 
initial octahedron and its subdivisions, generate an object which shrinks slightly 
with each subdivision. Those of the other form start as the dual of the 
octahedron, a cube. As this network is subdivided the volume it contains grows 
larger. If the radius of the octahedron is initially set to be somewhat larger than 
the earth (actually, 7.75 percent larger), the radius of the cube (where the radius 
is the distance from its center to any vertex) will be smaller than Earth's by the 
same percent. In the process of subdividing, the vertices of both figures tend to 
converge to Earth radius, eventually approximating spheres which are almost 
coincidental.2 
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FIGURE 3. Schematic of the initial GEM 'trioctacon' lattice: octahedral vertices are marked with 
triangles, cubic ones with squares. Intersections of the networks are marked with diamonds. This is 

an 'inverted' perspective drawn as if viewed from a nearby vanishing point. Note the diamond-
shaped facets which connect cubic and octa vertices. These are the faces of a Rhombic Dodecahedron, 

a form which contains both initial polyhedra. 

What DEPTH encoding does is to add information to each vertex in each level of 
both hierarchies which causes this process of convergence to depart from spher
icity. Flagging on a DEPTH code for a vertex can cause it to locally 'dimple' or 
'pimple'. Because two networks are involved, only one kind of wrinkling occurs 
at each. That is, the initial (octahedral) network, being larger in radius than the 
Earth, will contain the pimples (peaks and ridges), while the cube-based net
work, smaller than the Earth initially, will encode the dimples (pits and courses). 
Each vertex is assigned a single bit of storage, and will wrinkle if that bit is set, but 
will maintain a smooth curvature if its bit is not set. The direction of the 
wrinkling is fixed for each network (which is why only one bit is needed to 
encode it). The magnitude of the wrinkling is constant for all vertices at a given 
level, and diminishes geometrically (by root three) as triangles grow smaller, the 
dual networks converging. 

DEPTH represents (discrete) changes in elevation rather than (continuous) 
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heights. It works by comparing the value of an elevation to be encoded with the 
prior estimate for it (which can be arbitrary initially); if the difference between 
the actual and the estimated heights is greater than the tolerance in effect for that 
level, a flag is set to indicate that the estimate is to be raised or lowered by the 
current step size (which will be related to the tolerance). Moving down the 
hierarchy, step size gets smaller, halting the encoding when the displacement 
becomes less than some stated vertical error tolerance; this reflects either how 
precise the source data is presumed to be or how accurately one wishes to encode 
it. 

Formally, this constitutes a polynomial series (Dutton 1983, eq. 5) for each 
vertex, generating a weight for each term as a dummy variable. The weights are 
then multiplied by the step size for their level. Terms with weights of unity are 
added (if even) or subtracted (if odd); if a weight is zero, its term is ignored and 
displacement is toward sphericity. GEM'S data structure is simply a way of 
ordering these two series of weights, bit after bit. 

Elevation flags can be grouped into files containing fields for a specified 
number of levels. It is probably advantageous (and certainly simpler) to make the 
hierarchical depth (hence size and layout) of each file identical. Within a file, 
vertices can be clustered by level and arrayed contiguously, ordered by vertex 
number. This number, in essence a mathematical geocode, is assigned by count
ing vertices in a uniform way at each level. When finding the central point of a 
facet via trilocation, its location code can also be computed, then converted into a 
(byte) memory address for the linear tree. To be most useful, the vertex number
ing scheme should generate unique geocodes directly from latitude, longitude 
and level. The numbering problem has not been fully solved for GEM, and 
suggestions in this regard are welcomed. 

Programmability Issues. Despite that (or because) organizing and manipulating 
GEM data involve such primitive operations, not every programming language 
makes them easy. As data are arrayed by bits and addressed by bytes, using 
languages such as FORTRAN, BASIC and even PASCAL invites hacking byzantine, 
inefficient code. More polymorphous ones, including c, FORTH, LISP and of 
course Assembly Code, support GEM operations much more efficiently. In the 
current research effort a hybrid approach is being attempted, using c to code 
primitive operations and FORTRAN for higher-level procedures. In our environ
ment (Vax 11/780, VMS), this is accomplished easily, without recourse to Macro 
coding. 

Quality Control 
At one time every introductory lecture on data processing seemed obliged to 
note the acronym GIGO: Garbage In, Garbage Out. This rubric is usually a 
preface to the assertion that computers are mechanical, obedient and stupid, 
their software incapable of evaluating the integrity of information being manipu
lated. For most applications programs and database systems, this still is more or 
less the case. While each variable and parameter may have a defined set or range 
of valid values, incorrect ones can still penetrate such coarse filters, biasing 
tabulations and statistics, polluting databases. 
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As sets of measurements go, spatial data are distinctly corruptible. Map data 
have at least three dimensions (spatial location and value), each of which is 
subject to several sorts of error at various stages of compilation. The passage of 
time tends to blur the significance of most measurements, especially those that 
are catalogued without citation of sources and estimates of accuracy. Moreover, 
it is often more trouble than it is worth to attempt to overlay or merge map files 
compiled at different times, scales and in different formats, seriously hampering 
their utility for analysis and planning applications. 
Validation. Despite having a simple structure and lacking redundancy, a GEM 
database has considerable capacity to detect and reject suspicious data, provided 
that it is initialized with accurate measurements which are fairly widely distrib
uted, rather than being clustered in a few locations. Furthermore, all coordinates 
input must be explicitly tagged with estimates of horizontal and vertical accuracy 
to be acceptable. These error terms then determine the lowest level in the 
structure to which encoding can proceed. At some stage, vertical error will 
exceed the magnitude of vertical displacement, making it no longer possible to 
confidently assign a DEPTH code. Similarly, once horizontal error exceeds about 
one-half the distance between neighboring vertices, it is no longer possible to 
locate an observation in a particular facet. This means that less certain measure
ments are limited to the higher reaches of the hierarchy, while more precise ones 
dive deeper into it. 

Tuning. Once installed in the tree, a spot measurement fixes the heights of all the 
vertices it has visited during its trilocation. Should another measurement subse
quently be inserted which follows the same path (for any number of levels), 
because it is located near the first one, it must generate DEPTH codes which agree 
with those already in place. If, during this process, a DEPTH code is generated 
which conflicts with one already stored for a facet, the accuracy of one or both 
measurements is called into question. A general rule for resolving such conten
tions can be that the measurement having the smaller error terms (hence a greater 
depth of encoding) wins. Normally, one tries to insert the most reliable data into 
a GEM database first, so that they can referee subsequent measurements in their 
neighborhoods. For example, one could pin down the structure by first encod
ing known survey monuments, mountain peaks nd coastlines (where tidal inun
dation is not extreme) before entering less verifiable elevations. If, however, a 
subsequent measurement has greater precision than one already encoded, it 
should logically supersede it. This can be done, but may require a number of 
values inferior to the conflicting vertex to be modified in the process. 
Adjustment. To verify whether a candidate elevation is more precise than any 
measurement already stored within a facet where conflict occurs, one searches 
for set elevation flags inferior to the facet. If none are found, the value can be 
entered without altering any other data. Otherwise, flags will have to be re-set to 
maintain the heights currently encoded for them. A refinement is to adjust 
elevation codes outward from the node just encoded, interpolating values for 
neighbors at levels between their current depth and that of the new measure
ment. 
Interpolation. The final triangulation estimates elevations at the places where the 
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last two levels cross (at the middle of their edges). It is only at these locations that 
the two hierarchies meet. All other vertices are either in one network or another. 
The height computed will be the average of the four vertices which define the 
intersection. The result generates a network of right triangles defining the surface 
of the planet. Two such triangles are generated for each one in the lowest level 
encoded, doubling spatial resolution. 

FACETS 

Like any array storage structure, GEM provides a place for everything, with 
everything in its (approximate) place. As GEM storage is hierarchical, the size of 
the place a thing occupies can vary with its depth. Space must be pre-allocated, 
both in memory and in files, for all vertices throughout a breakdown, for as 
many levels as one intends to encode. While only one bit per vertex is needed, the 
number of them grows geometrically. Specifically, in a hierarchy of N levels of 
triangles, there will be 3**(N-I) ultimate vertices (leaves in the tree), and 
(3**N)/2 vertices overall, requiring (3**N)/16 bytes to fully represent the 
structure. To give examples, six levels will require just 46 bytes of data space, but 
12 levels demand 33,216 bytes, and to hold 18 levels 24,213,781 bytes must be 
committed. 

Reserving storage is cheap to begin with, but clearly grows prohibitively 
expensive beyond 12 levels or so. One thus must accept a tradeoff between a 
unified, inflated structure and a limited, manageable one. At the expense of 
slightly greater algorithmic complexity and processing time, the geodesic hierar
chy can be segmented into two or more orders, avoiding the inefficiency of 
storing unencoded areas. This means that each initial facet is rooted in a first-
order file which contains L levels of detail. Another L levels of further detail are 
then available from a group of second-order files: as many of these may exist as 
there are leaves in the first order tree, although none need be created unless 
elevations are encoded for the facets they contain. When encoding or searching 
beyond the first order, the appropriate second-order file is created or read into 
memory, doubling the amount of data held there. 

The type, size and format chosen for GEM files depend on many factors, few of 
which are intrinsic to the model itself. Fast direct access is desirable, but properly 
buffered, sequential files can be highly efficient. For simplicity of access and 
update, fixed block random files may work best. As already mentioned, file size 
can inflate enormously if one attempts to encode many levels of the tree at once. 
In order to tune GEM to virtual memory environments, data should be blocked 
into page-sized records, such as 256, 512 or 1024 bytes. Given a 512-byte page 
size, it should be possible to store eight levels of triangles (more than 6500 faces) 
within it, accessing them in a single read instruction. This tessellates the Earth 
into facets roughly 3,500 square miles in area, defined by vertices spaced about 
100 miles apart. Eight such pages, 4096 bytes in all, would thus represent the 
earth's shape as a first approximation.3 

To then extend the hierarchy another eight levels, each of the 52,488 facets of 
the first order (8 sets of 6561 facets) would generate 6561 facets of its own, 
requiring storage of one page of data apiece. This amounts to nearly 350 million 
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facets for the whole planet, and uses slightly less than 27 million bytes to store 
their DEPTH codes. Each 16th-order facet intersects with a 15th-order one in.the 
final interpolation, yielding about 690 million ultimate triangles. Typically, they 
cover about 0.075 square miles in area, and have vertices spaced about 0.3 miles 
apart. 

Geocoding Considerations 
Whether or not an actual GEM database is involved, GEM'S geodesic tessellation 
procedure can be employed to compute a hierarchical address for any point on 
the earth's surface. The address is simply the concatenation of facet numbers 
created by subdividing the original eight faces of the initial octahedron into nine 
facets each. The address will be shared, of course, by all other points lying within 
the lowest-order facet computed. Each subdivision contributes a low-order 
decimal digit as it decomposes the facet into nine nested ones, a rapidly converg
ing procedure. At some level of subdivision the triangle containing a specific 
location will be sufficiently small to encode it within its presumed locus of error 
or within an acceptable distance for the purpose at hand. The sequence of 
triangles visited in arriving at this determination constitutes the geocode. For 
example, the eight-digit geocode '69825846' will isolate a point somewhere on 
the planet, distinguishing it from 8*(9**7), or more than 38 million other 
possible facets, each of which occupies about one-quarter of a square mile. Eight 
or nine levels of GEM geocoding would therefore normally suffice to uniquely 
identify land units at the scale of quarter sections, including most postal zones 
and census tracts. 

As it happens under one possible GEM numbering system, the 'gemcode' 
69825846 occupies a portion of lower Manhattan in New York City, a triangular 
area containing the World Trade Center, and part of Wall Street, but not large 
enough to include City Hall. The sequence of facets leading to this area is 
illustrated in Figures 4A through 4F. The figures show detailed U.S. state 
outlines superimposed on the sequence of GEM facets leading to the address 
69825846 at six different scales. Only those facets which contribute to the 
trilocation of lower Manhattan are included, 64 triangles in all. The apparent 
discrepancies in the locations of edges shared by successive levels is due to the 
distortions of the orthographic projection (centered on Washington, D.C.)used 
for the maps. As these chords shorten and lie closer to the Earth's surface, the 
disparities become unnoticeable. 

The relevance of this somewhat abstract framework is its capability to generate 
a spatially meaningful geocode for any location, and more importantly, its 
ability to derive standardized coordinates from any given geocode. Other hierar
chical systems have been devised which have some of these properties, notably 
UTM. All of them, however, work in a planar domain, and are tied to specific 
projections which must be referenced to particular zones or map sheet origins. 
GEM addressing is planetary in scope, uniform in its geodetic structure, and 
carries with it an explicit statement of accuracy. Consequently, spatial partition
ing schemes such as GEM can generate geocodes which could concretely denote 
coordinates. If users could agree on rules for generating GEM geocodes, it would 
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be possible to replace all the coordinates in a cartographic data file (each of which 
is normally described by two 32-bit words) by a 64-bit (in two 32-bit portions) 
hierarchical geocode, capable of resolving points several inches apart.4 This 
would then enable the extraction of the data at lower resolution for use in 
changing scale or equating the precision of coverage boundaries for overlay. 
Such precision is certainly far in excess of what would be needed for digital 
terrain modelling. 

Note that the geocoding scheme illustrated here uses only the facets in the 
octahedron-based network, ignoring those in the alternate (cube-based) one. 
Since the two networks overlap, using both in a geocode would cause ambi
guities, even though finer scale distinctions would be possible. As it is, each 
successive digit in the geocode provides a threefold refinement in spatial resolu
tion, hence scale. Nineteen such jumps can be encoded in a 64-bit integer 
identifier, capable of identifying more than 10**18 distinct locations. As men
tioned above, this is more than adequate for any practical purpose, as each such 
facet occupies only a couple of square inches on the earth's surface. The fact that 
most computers cannot represent integers of such magnitude may be raised as an 
objection to using such codings, but there is never a need to manipulate a 
complete geocode at once, except to copy it. This can be done piecewise. 

What About the Geoid? 
More serious objections to GEM encoding can be raised concerning the assump
tions necessary to model a planet as a polyhedron. Real celestial bodies are not 
perfect spheres, and their geodetic irregularities introduce disparities between 
the locations of a regular polyhedron's vertices and regularly-spaced points on 
the planet's surface. Minor departures from sphericity can noticeably displace 
the computed locations of vertices at large scales. This would negate much of the 
spatial utility and universality of GEM geocoding. 

Fortunately, geoidal variations can be represented by geodesic models. All 
that should be necessary is to orient the initial octahedron to cardinal points, and 
subdivide it a few times into several thousand facets. Their vertices can then be 
projected onto the geoid by applying the relevant geoid model. The transformed 
coordinates would then be archived to serve as control for all further subdivi
sions, in effect serving as a finite-element model of the geoid. This basic 
framework could then be made available to the public in a standardized format, 
providing unified ground control for any application in any location. Should 
geodetic revisions occur, the 'standard' faceting would have to be recomputed, 
but user datasets would not have to be edited. That is, new assumptions about 
the shape of the planet would alter the locations represented by geocodes but 
leave the geocodes themselves unchanged. This somewhat facile description 
hides the enormous amount of labor that may be needed to create a unified model 
of the geoid Intense commitment and cooperation between public agencies and 

FIGURE 4. A six-level GEM breakdown illustrating geocoding properties; note that only octahedral 
facets converging on Gemcode 6982846 are shown. 



FIGURE 4a. United States in
relation to GBMoctant 6

FIGURE 4b. Eastern United
States within CEMCODE
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FIGURE 4c. Northeastern
United States centered on
GEMCODE6982....
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professional societies in many nations appears to be needed to do the job right. 
Using a geodesic approach the actors can negotiate global differences without 
obsoleting entire map series or databases, which rather than having to be recom
piled, can be periodically tuned into better shape. 

FORWARD 

Viewed from space, the Earth assumes the form of a beautiful, variegated bubble. 
In our efforts to measure and model its topography, we forget that as rugged as 
landforms may appear to us here, they are merely its texture. Were we able to 
compress it to be one meter across, the Earth would feel as smooth as the 
proverbial Billiard Ball: Mount Everest would protrude just half a millimeter 
above the spheroid. GEM offers a way to model the form of our planet or others, 
gracefully and economically, and as completely as one is prepared to measure 
and encode its surface. 

In the course of several years, GEM has evolved5 from a space-saving scheme to 
encode gridded surfaces as quadtrees (its DEPTH component) into a fractal 
formulation of global geomorphology. Throughout the process, useful prop
erties continued to emerge while the model's size shrank and its simplicity grew. 
Work remains to be done, especially in regard to the applications (archival, 
analytic, graphic) that GEM might effectuate or enhance. As well as circumstances 
have allowed, the origins, procedures and properties of the model have been 
discussed. Although certain suggestions were made, no particular organization 
for data was prescribed. This is due both to unanswered questions about the 
model and to the inevitable tradeoffs involving memory capacity, file access and 
other properties of particular systems. 

While any given implementation of GEM is likely to be concerned with local 
terrain data, any of these archives can be merged into larger databases. Their 
union can be made to contain the most accurate versions of any regions which 
happen to be duplicated. It is therefore not unrealistic to envision a network of 
GEM archives, each with detailed data concerning certain localities, functioning 
as a coherent, reliable but decentralized database. 

Claiming that a data model as minimal as GEM can catalog and verify vast 
numbers of measurements more or less automatically is likely to raise some 
eyebrows. It is hoped that this presentation has communicated how such prop
erties derive by construction and inference from the polyhedral and polynomial 
structures serving as the basis for GEM. All persons wishing to comment, contest 
or collaborate, please contact the author. Together, we may be able to express 
ideas and information as images of our planet, illuminating its form, features and 
facets, in all their fullness. 

NOTES 

1 An icosahedron is a polyhedron having 20 equilateral triangular faces joined along 30 edges which 
connect each of its 12 vertices to 5 neighboring ones. It is the largest regular platonic solid which is 
convex (not stellated). This figure is the basis for the construction of a large family of space-frame 
structures developed by R. Buckminster Fuller, his colleages and followers. For a comprehensive 
statement of the principles governing these constructions consult Fuller, 1982. 
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1 The duality of the cube and octahedron is central to Fuller's geometries. One of his most 
interesting discoveries is a construction known as the 'jitterbug', which demonstrates the instability 
of the cube-oct form, which Fuller terms 'vector equilibrium'. The jitterbug swings ambivalently 
from an octahedral state through a cube-octahedron stage before collapsing again into a re-aligned 
octahedron, pumping in and out in alternating cycles, GEM'S geometry comes quite close to being a 
high-frequency jitterbug. 

' These first eight levels of detail do not contain much information about the relief of the Earth, but 
do reflect its shape. If not encoded, this hierarchy assumes spherical proportions. If encoded with 
geodetic data, however, the 52,488 facets can model the geoidal shape quite adequately. Construc
tion of such a model geoid alone might make the investment in developing GEM worthwhile. This 
possibility is discussed below. 
4 This, of course, requires that coordinates be expressed as, or be converted to, geodetic coordinates; 
local coordinate systems are not directly translatable into GEM control points. 
1 A number of individuals have contributed to this process. Without question, much of its energy 
devolves from Buckminster Fuller's work, amplified by innumerable other ideas. Among those are 
Benoit Mandelbrot's elegant expression of elemental eclecticism, les formes fractals, ce n'est pas; 
while barely hinted at here, this perspective provides important criteria for understanding what the 
model can contain. Closer to home, Denis White has patiently volleyed ideas off walls where I 
lobbed them. Dennis Dreher's geometric competence has helped to keep the scheme rooted in 
physical reality, in the process of constructing a scale model of the data structure. Kelly Chan is 
gratefully acknowledged for his musings, essays and especially, code. To Dan Schodek, Faculty 
Director of the Lab for Computer Graphics, goes my appreciation for his tolerance and support of 
visionary puttering. The author, notwithstanding, assumes full responsibility for GEM, in all its 
polymorphic perversity. 
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