
APPLYING SOFTWARE ENGINEERING TO A GENERAL PURPOSE
GEOGRAPHIC INFORMATION SYSTEM

Peter Aronson
Environmental Systems Research Institute

380 New York Street
Redlands, California 92373

(714) 793-2853

ABSTRACT

Over the past 14 years, ESRI has constructed three commer
cial general purpose Geographic Information Systems. The
first two, PIOS and GRID, were constructed in the haphazard
fashion typical of almost all past CIS development. The
most recent, ARC/INFO, was from its initial design,
constructed following modern software design and programming
methodologies. In the course of the design, construction
and maintenance of ARC/INFO, many lessons about the develop
ment of large software systems in general, and of GIS in
particular, were learned.

INTRODUCTION

Most successful geographic data-processing software has not
been designed by computer professionals (although there are
exceptions, see Tomlinson, 1974). Such software has
generally been designed by geographers or planners or
foresters with limited programming background. This is due
to the obscure nature of most geographic data-processing --
typically, no one outside those fields dealing with geo
graphic data has had a sufficient grasp of its special
requirements to produce useful tools to manipulate it.

ESRI's earlier GIS grew from such specific software packages
(PIOS started as a simple package to digitize and to report
overlay areas (Tomlinson, et al, 1976). They were not
really planned as systems. The initial package was designed:
then, whenever a new function was required, a new program
or subroutine would be added to perform it. The systems
simply grew. As long as a system fulfilled its current
requirements, no matter how poorly, no overall system plan
would be made.

In the winter of 1980-1981 the initial specifications for
what was to become ARC/INFO were put together by Scott
Morehouse. The original plan was for an arc/node digitizing
system (Guevara, 1983), including an automatic topological
"cleaning" program that would break line segments at inter
sections, snap closed undershoots and remove overshoots, :j,nd
would feed into the PIOS system. This package was carefully
designed, constructed and tested (and is currently still
being employed after four years of heavy use).

At this time, dissatisfaction with PIOS prompted the next
stage of ARC/INFO's development. A complete new design was

23

performed (actually, the design had begun with the design of
the digitizing system, however, for internal political
reasons, the processes were officially separate). The
ARC/INFO Geographic Toolbox concept was developed (see
below), then the development of the ARC/INFO full geographic
information system began.

ARC/INFO DESIGN REQUIREMENTS

ARC/INFO was planned as a general purpose geographic infor
mation system, including commands for data input, analysis,
output and management. It needed to be efficient to compete
with special purpose systems. Most important, it had to be
well designed and built.

That ARC/INFO be well engineered was vital for a number of
reasons. First, because of practical limitations it would
have to be built in stages, with capabilities being added
as time went on. This would require that the system be
carefully broken down into logical modules. Time con
straints required that some problems be dealt with initially
by simple, but non-optimum solutions, then later redone in
a more efficient manner. For example, the original attri
bute handling after an overlay was done by a job control
program, then receded into FORTRAN a year later. This
required that each module have well-defined inputs and out
puts, as well as not generating side effects.

Second, the system would have to be easily expandable, both
in the sense of adding new functions, and in increasing
functional limits (such as the number of points in a poly
gon). When a system has a large and varied user base,
there are sure to be additional capabilities required over
time, not all of which can be anticipated at design time.
For example, ARC/INFO did not have point-in-polygon overlay
or point subsetting until Spring 1983 when they were
requested by the State of Washington, Department of Natural
Resources.

Third, it had to be portable. It was quite certain at the
beginning that ESRI would at some point want to have
ARC/INFO running on some machine other than PRIME, ESRI's
current in-house development machine. PIOS and GRID were,
at that time, available on PRIME, HP 3000 and IBM.

Finally, it had to be maintainable. Fixing problems in
PIOS or GRID usually required either spending considerable
time reading and comprehending obscure code, or writing a
new program from scratch. This led to patched together
systems where it was often easier to find some other way
to solve a problem than to fix a bug.

ARC/INFO DESIGN PHILOSOPHY AND STRUCTURE

ARC/INFO was designed as a "toolbox" of geographic opera
tors. ARC/INFO commands perform such operations as:
overlay (Union, Intersection, Identity and Update), sub-
setting (Clip, Reselection, Sliver Elimination, Polygon
Dissolve, Erase (reverse clip), and Multiway Split),
combination (Mapjoin and Append), data input (Digitizing,

24

Generation, Grid-to-Polygon, COGO and Conversion programs),
output (Plotting, Conversion programs and Report Generation)
modeling (Theissen Polygon Generation, Network Analysis,
INFO (relational database manager) and Corridor Generation)
and data management (Librarian Map Library Manager).
ARC/INFO commands can be thought of as statements in a
geographic modeling language. Combined via system job con
trol language (CPL on PRIME, DCL on VAX, CLI on Data
General and EXEC on IBM CMS/VM) with INFO's relational pro
gramming language, complex spatial models can be implemented
as relatively simple "programs".

A simple example of such a program could take as input a
map (coverage in ARC/INFO terminology) of an area within a
map library, and produce a report of the estimated total
value of state-owned forest stands and a map of those stands
shaded by value per acre. The procedure would go something
like this:

PROCEDURE STATE-FOREST-VALUE (AREA)
/* */
/* This procedure produces an estimated value report and */
/* an estimated value per acre plot for a specified area. */
/* */

EXTRACT from Map Library FOREST coverages: FOREST-STANDS,
SOILS and OWNERSHIP by AREA.

/* */
/* Overlay FOREST-STANDS with SOILS and OWNERSHIP to */
/* produce a coverage that contains all the information */
/* required to calculate cost and owner. Remove those */
/* polygons not owned by the state. */
/* */
IDENTITY FOREST-STANDS with SOILS to produce COST

INTERSECT COST and OWNERSHIP to produce VALUE

RESELECT VALUE so that OWNER = 'STATE 1 to produce
STATE-VALUE

/* */
/* Create products. */
/* */
Model STATE-VALUE with INFO to produce Estimated Value and
Estimated Value per Acre (ESTVAL/AC), and produce a summary
report of Estimated Value and add ESTVAL/AC to STATE-VALUE.

Generate a plot of STATE-VALUE shaded by ESTVAL/AC.

Clean up (Delete FOREST-STANDS, SOILS, OWNERSHIP, COST,
VALUE and STATE-VALUE.

END

This adaptable structure is mirrored inside ARC/INFO as
well. ARC/INFO consists of about eighty FORTRAN 77 programs
linked in various fashions by job control language. The
CLIP command, for example, consists of nine FORTRAN programs
(not all of which would be used by any single execution)

25

linked together by about (on the PRIME) 60 lines of job
control language. Many times new ARC/INFO commands have been
created simply by linking these programs in new combinations
("As above, so below").

THE ARC/INFO SOFTWARE LIFE-CYCLE

Most commercial general purpose software systems are in a
continuous state of development. Operating systems, for
example, are re-released at a consistent rate, often with
fairly large changes in functionality coming every year or
so. A general purpose geographic information system, like
ARC/INFO, is also in such a state. There is typically a new
release every four to six months, and each release is sure
to contain one or more new commands, alteration of two or
three existing commands, and a reasonable number of fixed
bugs. As a result, ARC/INFO has its own internal develop
ment process.

The software life-cycle is one of the basic concepts in
software engineering. The waterfall life-cycle model shown
in Figure 1 is based on one by Barry W. Boehm (Boehm, 1981)
and modified for the ARC/INFO development process. This
model differs from the usual model in that it starts from
requirements (as a result of ESRI's operating procedure
discussed below) and the incorporation of phototyping as
separate steps.

Step by step the ARC/INFO life-cycle consists of:

1) Requirements. Requirements for ARC/INFO come from
two sources: software modification request forms and the
systems group's section of the yearly company plan. The
software modification request forms (commonly called "bug
sheets") are filled out either by in-house personnel
(usually from the production group or from the systems
group) or by the software support group by user request.
These consist of reports of problems in the software ("bugs")
and of requests for enhancements. The yearly company plan
contains those enhancements that the management feels would
be useful in selling new systems or in satisfying an
important requirement of current users.

2) Feasibility. This step is performed by the system
architect. The requirements are examined for practicality
and necessity, and those that can be performed acceptably
by existing software are usually rejected at this point.
There is a distinct effort made to minimize the amount of
code in ARC/INFO, when it can be done without sacrificing
significant functionality. Code that is not written does
not have to be maintained. Those requests that would
require excessive programmer time are usually tabled or
rejected at this point (however, occasional major system
additions are made, such as Network Analysis and Map Library
management packages added early in 1985). Those modifica
tions deemed practical and desirable are then passed on to
the design stage.

3) Product Design. This task is performed by one or two
development programmers, usually acting under the super-

26

Software
requirements

Validation

Feasibility

Validation

Product design
^
Verification

r; .1
Prototype/proof- ^ --' .
of-concept ^- •** •

^ ** Analysis I
±________I

Detailed design ^"

Verification

I———~-
| Prototype

Analysis
i

Code

Unit test

Integration
Product
verification

Implementation
^
System test

Operations and
maintenance^.

Revalidation

FIGURE 1 - The ARC/INFO Software Life-Cycle

(based on Boehm,

27

vision of the system architect. Performed at this time are
the four major general design tasks: user interface design,
initial algorithm selection, data flow design, and major
module specification.

The user interface is usually described in terms of an
entry in the command reference manual. Inputs, outputs,
prompts and subcommands are fully described. This design
also serves as a rough draft for the user documentation and
on-line help files.

Boehm placed algorithm selection under detailed design, but
in GIS development, where the algorithms are not always well
understood, it has been found necessary to have at least an
initial approach to an algorithm before preceding any
further. At this stage, algorithms can often be compared
via analysis using computational geometry (Guevara, 1983).
If this proves inadequate, then prototyping may be required
(see Step 4 below).

A data flow design shows each program or operational module
in a command and each file/data structure in and out of each
program. It looks at programs/modules as operations on
files/data structures. Since most ARC/INFO commands are
sets of programs linked operationally by files, a data flow
design can be very helpful.

Defining subroutine modules might seem out of order at this
stage, but in ARC/INFO the careful design of the low-level
subroutine modules is considered as important or even more
important than that of high level program sections. These
subroutine modules, each based on a single data structure
(such as variable record-length, random access files or
coverage boundaries, or the user terminal), are the basic
building blocks of ARC/INFO. As well as structuring the
code and performing information hiding, these modules supply
the primitives used in the construction of geographic
operators. This approach has allowed ARC/INFO to be pro
grammed in FORTRAN (selected for portability), without any
problems due to the limited data structures available, as
all major data structures are accessed via subroutine calls
(70%+ of ARC/INFO code (exclusive of comments) consists of
subprogram calls and control statements).

4) Prototyping/Proof-of-Concept. This is an optional
stage, used as an aid in algorithm selection. It often
helps in choosing an algorithm to write a small program to
perform comparative testing. This process can be invaluable
for selecting among competing algorithms when mathematical
analysis is inadequate. The current sets of sorts used in
polygon overlay and the search algorithm used by the arc
editor were both selected in this fashion.

5) Detailed Design. A complete algorithm definition is
produced. Pseudo-code is generated for all the main program
sections. Both file formats and module contents are fully
defined.

6) Prototype. This optional stage is used when the
detailed design will not, or cannot, be carried past a

28

certain point. This usually indicates that there is not
enough information available to complete the design. Often,
building a simple, quick version of the product will raise
all of the design questions, allowing them to be answered
before the final coding. This is particularly useful when
constructing a function that no one involved in the develop
ment has experience with, and for this there is little or no
published information available. The Map Librarian, for
example, went through this stage.

7) Coding. A complete ARC/INFO command is constructed
and tested by the development group. This is installed into
the active code set, along with any changes the installation
requires in other existing code.

8) Integration. The command reference manual, user
manual, training notes and programmers manual are updated
for changes. The software support group performs indepen
dent testing of the new/modified command(s). At this stage,
alterations in the operation of the software being tested
may be requested by the software support group. An alpha
release is made to inhouse users.

9) Implementat ion. The new software is officially
included into the next beta release, and listed in the
installation notes. After beta release, if no new problems
are reported it is included in the normal release. Finally,
it is then installed on all systems and trained.

10) Operation and Maintenance. As the software is
operated, problems or shortcomings are discovered and tran
scribed onto software modification request forms. This
cycle continues until either the software is entirely re
placed or the function it performs is no longer needed (the
former has happened to the original line-overlay command
OVERLINE, the latter will happen to the ARC to PIOS conver
sion command ARCIDC).

PROGRAMMING PROVERBS FOR CIS PROGRAMMERS

This section is a collection of small tidbits of advice for
prospective programmers of geographic information systems
(as well as being my tribute to Henry F. Ledgard). For
the most part, these simply reiterate the material discussed
above, but in a more succinct form.

Always minimalize code. The more code you have, the
greater the maintenance load. Whenever possible, use
existing code in preference to writing new code. Deprogram
(reduce the amount of code without reducing functionality
or readibility) whenever the opportunity arises.

Construct useful subroutine packages. Low level func
tions will be used again and again. Putting them in
coherent packages allows simple reimplementation, isolation
of system dependent code, and information hiding.

Any special case that can occur, will occur. Because of
the vast quantities of information involved in geographic
and cartographic data processing, GIS procedure algorithms

29

must be particularly robust, as any possible special case
will arise in short order (and typically in a vital data
set) .

When in doubt, test. If the choice between two algo
rithms is unclear, submit your case to the computer. Write
test programs for each case, and run them through a variety
of typical and extreme cases to learn their behavior. Then
choose the algorithm on the basis of experimental results.

CIS procedure algorithms will have unexpected character
istics when coded. GIS procedures are often not well under
stood. Formal analysis can only tell so much. A host of
practical issues involving machine precision, special cases,
and so forth, are sure to arise in the coding. This
characteristic, combined with the above lesson, leads to
the requirement that GIS require extensive prototyping
before acceptance.

A general purpose_GIS needs to be made of flexible
building blocks, to allow new functions to be easily added.
Since a general purpose GIS is not locked into a single set
of operations, from time to time a user will require some
capability that has not been hitherto present in the system.
It is necessary that such capabilities not be difficult to
add.

CONCLUSIONS

The design and development methodology of ARC/INFO presented
above was the result of a combination of the deliberate
application of software engineering methodologies and of
trial and error. Even given a complete set of methodologies
and techniques, it is not a simple matter to apply them.
Long ingrained procedures must be removed, and new habits
learned in their place. The procedures described here,
simple as they are, can seem unwieldly and overly slow to
an overworked programming staff. There is often a strong
temptation to skip methodology and "just fix the problem".
However, the consequences of ignoring methodology in differ
ing versions and bad releases will drive home the need to
follow a well defined procedure.

Geographic information systems are, by their nature, large
and complex systems. If they are not well built, they will
simply not work well. Software engineering is the logical
application of methodologies such that software products and
systems are well constructed. Therefore, usable geographic
information systems need to be constructed following the
principles of software engineering.

REFERENCES

Boehm, B.W. 1981, Software Engineering Economics, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey.

Guevara, J.A. 1983, A Framework for the Analysis of
Geographic Information System Procedures: The Polygon
Overlay Problem, Computational Complexity and Polyline
Intersection, Unpublished Ph.D Dissertation,SUNY at Buffalo.

30

Tomlinson, R.F. 1974, Geographic Information Systems,
Spatial Data Analysis, and Decision Making in Government
Unpublished Ph.D. Thesis, University of London.

Tomlinson, R.F., Calkins, H.W., Marble, D.F. 1976,
Computer Handling of Geographic Data, The Unesco Press.

31

