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ABSTRACT

Pick's Theorem provides a means for calculating areas of 
closed figures formed by connecting points of a regular 
grid (Coxeter, 1961). The basic equation is

AREA = GI + 1/2*GB - 1

where GI is the count of grid points inside of the figure 
and GB is the count of points on the figure's perimeter. 
The application of Pick's Theorem on polygons represented 
by various chain codes is the primary topic of this paper. 
Two grid structures, those formed by corner points of rect 
angular and of hexagonal cells, and four Freeman-type en 
codings, 4 and 8-way on the rectangular grid structure and 
6 and 12-way on the hexagonal grid structure, are those to 
which Pick's Theorem is specifically applied. A geometric 
proof of the proper area calculation through the original 
equation for 4, 6, and 8-way encodings is given. A revised 
Pick's Theorem for the grid formed by all 6 corner points 
of hexagonal cells allows application to 12-way encoded 
polygons. A proof is also given for this new equation. 
Through sequentially processing the Freeman codes, an al 
gorithm produces the grid point values which are used in 
the area calculation. This algorithm is shown to correctly 
handle polygons with holes and pinched perimeter.

INTRODUCTION

The computation of polygonal areas is a common operation in 
cartographic systems. The method of area calculation 
employed is dependent to some extent on the data format. A 
formula which was proven long before the days of computer- 
assisted cartography, Pick's Theorem, calculates areas of 
polygons whose vertices are points in a regular grid. The 
basic equation is

AREA = GI + 1/2*GB - 1 (1)

where GI is the count of grid points inside of the polygon 
and GB is the count of grid points in the polygon's peri 
meter (Coxeter, 1961). Cartographic data originating from 
a variety of vector or raster formats, when quantized into 
a regular grid, can be efficiently stored as chains of 
neighboring grid points. Lines and polygonal boundaries
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are then represented as sets of integer codes which des 
cribe the line direction between points (Freeman, 1961). 
This representation has been called chain or starburst 
codes, but is commonly referred to as Freeman encoding. A 
particular Freeman encoding format is derived from the grid 
geometry and chosen number of angular directions from a 
grid point. Storage and processing efficiencies and compu 
tational and positional errors with use of Freeman encoding 
versus other data formats must be studied in building a 
case for or against use of this method with cartographic 
data. The purpose of this paper, however, is to show how 
Pick's Theorem can be applied for area calculation of poly 
gons represented by four chain code formats. The four cho 
sen formats are 4 and 8-way encoding in a rectangular grid 
and 6 and 12-way encoding in a hexagonal grid.

THEORY

Although Pick's Theorem is a simple equation for area cal 
culation, its proof and application seem to be relatively 
obscure. The proof of the theorem given in (Coxeter, 1961) 
involves decomposing polygons into simpler ones. The area 
equation for a single polygon has been extended and proven 
to apply to a polygon with n holes (Sankar and Krishna- 
murthy, 1978). Applications of Pick's Theorem to 4 and 8- 
way encoded polygons have been shown without proofs (Rosen, 
1980 and Kulpa, 1977). A simple proof of Equation 1 based 
on the geometry of Freeman encoding can be stated inform 
ally. Examples of 4, 8, and 6-way encoded polygons and 
their encoding schema appear in Figure 1. The 4 and 8-way 
encodings use a grid whose points are corners of rectangu 
lar cells, while grid points for 6-way encoding are 3 of 
the 6 points of hexagonal cells. Each grid point "owns" a 
Thiessen polygon which is identical in shape and area to 
the cells of the grid structure. To the right of each 
example is a grid point with its Thiessen polygon (dashed 
lines) and n-way chain codes. For grid points located 
within the polygon boundary, counted in GI of Pick's Theo 
rem, an area contribution of one is made for its Thiessen 
cell. Considering points on the polygonal boundary, those 
counted by GB of Equation 1, a straight line of two equal 
chain codes crossing a grid point bisects that point's 
Thiessen cell. The area expectation for a GB point is then 
(1/2) cell. Where the chain code changes at a grid point, 
there is deviation from this expected area. As seen in the 
right half of each Figure 1 example, the n chain codes at a 
grid point cut its Thiessen cell into sectors with equal 
areas of (1/n) cell. For each unit change in chain code at 
a point, an area deviation of (+l/n) cell from the (1/2) 
cell expectation is produced. Assuming that Freeman chains 
circle polygons in a clockwise direction, polygon closure 
requires a net total of n clockwise code changes within the 
chain. The result of this is a subtracted area of n*(l/n) 
cells from the straight-line expectation of (1/2)*GB cells. 
This corner-correction value becomes the (-1) term of Equa 
tion 1, completing the informal proof.

The 12-way chain code is shown in Figure 2(a) in a polygon 
example, using the code scheme from (Scholten and Wilson, 
1983) with X and Y grid orientations reversed. Figure 2 (b)
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Figure 1. Examples of 4, 8, and 6-way encoded polygons.
Chain coding key is in right half of each figure
(a) 4-way encoding:

polygon code chain= (1,1,1,0,0,3,3,2,3,2)
(b) 8-way encoding:

polygon code chain=(0,1,0,7,6,5,4,2,4,3)
(c) 6-way encoding:

polygon code chain= (2,2,1,0,0,4,5,4,3)
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Figure 2. 12-way encoding.
(a) 12-way encoded polygon:

code chain=(5,4,2,0,11,0,7,11,10,6,5,7)
(b) Chain code directions from upper-tier

grid point. Thiessen triangles are shown 
in dotted lines.

(c) Chain code directions from lower-tier
grid point. Thiessen triangles are shown 
in dotted lines.
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illustrates the chain codes at a grid point which is at the 
top of a vertical hex cell edge (upper-tier point) , while 
Figure 2(c) shows the 12 codes at a lower-tier grid point. 
Thiessen polygons created through connecting perpendicular 
bisectors of a point with its 12 neighbors make overlapping 
tri-hexagonal shapes, then bisecting the area of overlap 
leaves the triangular Thiessen cells shown in dotted lines 
for each of Fig. 2 (b) and (c) . It is evident that a 
straight line of two equal chain codes crossing a grid 
point does not in all cases bisect the Thiessen triangle, 
and that the sector areas of deviation where codes change 
are not equal for all codes. For these reasons, 12-way 
encoding requires a different formulation of Pick's Theorem. 
The Pick's Theorem equation for 12-way Freeman encoding is

(2)

where GI is the count of grid points inside of the polygon, 
GB(ODD) is the count of odd-valued 12-way codes in the 
chain, GB (EVEN, UPPER) is the count of even-valued codes in 
which the centroid of the hexagonal cell crossed by that 
code lies to the right of the code vector (inside of the 
polygon), and GB (EVEN, LOWER) is the count of even-valued 
codes in which the centroid of the hexagonal cell crossed 
by that code lies to the left of the code vector (outside 
of the polygon). For the proof of this equation, first 
consider that the equation counts Thiessen triangles, then 
gives area in terms of hex cells of the grid. The (1/2) 
factor scales the count of triangles to hex cells, as this 
is their area ratio. Each grid point located within the 
polygonal boundary, counted in GI , contributes one to the 
area. A straight line of two odd codes crossing a point 
bisects its Thiessen triangle, thus the 1/2*GB(ODD) term. 
Assuming polygon interior to the right of the chain vectors, 
straight-line GB (EVEN, UPPER) codes contribute 2/3 of a 
Thiessen triangle (codes 0,4,8 in Figure 2 (b) and 2,6,10 
in Figure 2(c)), while the remaining straight-line even 
code situations, counted in GB (EVEN, LOWER) , contribute an 
area of 1/3. As in the proof of Equation 1, polygon clo 
sure requires a net total of 12 code changes in a clockwise 
direction, and each code change produces an area deviation 
from the expected straight-line GB area for the first of 
two codes. To prove that the total area deviation for a 
polygon equals one Thiessen triangle, one must consider an 
algorithm which marks sectors of the Thiessen triangle when 
that sector is the area deviation corresponding to a part 
icular change of code. The starting grid point of a poly 
gon sets the base triangle in either the Fig. 2 (b) upper- 
tier or Fig. 2(c) lower-tier grid point situation. As the 
polygon chain is cycled, Thiessen triangle sectors are 
marked for clockwise code changes (GB area is less than 
straight-line expectation for the code) or unmarked for 
counterclockwise code change (GB area is more than the 
straight-line expectation) . The grid point tier changes 
for each odd code, but the chain ends at the same tier as 
it begins. Area deviation sectors for a given odd coderodd 
code change are the same total area in either tier. Thus 
all code changes mark sectors in the base triangle or mark 
sectors between pairs of odd codes in the other tier's
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triangle, which equal the area of those same sectors in the 
base triangle. The result is that all sectors of the base 
triangle become marked, which is a total area deviation of 
(-1) from the straight-line area expectations for GB points. 
This is the term (-1) in Equation 2, completing the proof.

DESCRIPTION OF ALGORITHM

An algorithm has been written and implemented in a FORTRAN 
77 program which computes areas of 4, 6, 8, or 12-way Free 
man-encoded polygons by use of the Pick's Theorem Equations 
1 and 2. Constraints on the input polygons are that they 
be simple closed figures, cycled clockwise (polygon inter 
ior to right), and that holes are linked to the perimeter 
by chain codes. Chain pre-processing removes zero-area 
peninsulas (detected by 180° change of direction in consec 
utive codes) and rotates the chain so that the last code 
has a nonzero X-component. A loop processes each chain 
code by breaking the code into X and Y grid coordinate 
components, updating the (X,Y) of the code vector destina 
tion, and incrementing GI and GB point counts. The funct 
ion NC(Y) provides a count of grid points in a vertical 
column below current coordinate Y to a base level Y=0, 
and NCOFF(Y), used in the hexagonal grids, counts the col 
umn below (X+1,Y) for current grid point (X,Y). The 
actions taken for specific codes are shown in Table 1. 
After the last chain code has been processed, GB is set to 
the chain length, and GI is the chain length plus the num 
ber of internal grid points minus a correction factor for 
areal overcount by GB. This areal overcount may occur 
when GB counts every code while more than one code reaches 
a given grid point. The original Pick's Theorem works for 
some of these cases because such revisited grid points are 
visually counted only once, while in sequential processing 
of the codes no memory is kept of which grid points were 
reached. The equation

GI' = GI - GB (3)

produces the GI value for insertion into area Equations 1 
and 2 which corrects for areal overcount in GB. The reader 
may wish to confirm from the situations given in Table 1 
that when the chain revisits a point in such a way that the 
polygon area lies between the code vectors which meet the 
point, the algorithm only increments GI once while GB will 
count two, giving a net area correction of (-1) at this 
grid point by Equation 3. Holes in polygons are correctly 
handled by being cycled counterclockwise and linked to the 
polygon perimeter by chain codes; they are then made up 
of points counted in GB, and interior grid points within 
the hole become points external to the polygon, which are 
subtracted out in processing the top edge of the hole. For 
12-way chains, the algorithm also maintains the three 
separate GB counts of Equation 2 by keeping track of upper/ 
lower tier of grid points in the chain. The result of each 
polygonal calculation is the area in terms of grid cells, 
which can be directly converted to square user coordinate 
values by applying cell dimension information.
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(situation and update of GI) (description)

IF(DX.GT.O) THEN 
GI=GI+NC(Y)+1

IF(DX.EQ.2) GI=GI+NCOFF(Y) 

IF (.NOT.XFLAG) THEN
IF(...FORTRAN code to test for

cases)

GI=GI+NC(LY)+1 

ELSE (must be one of

add column below and
including current point

add column passed over at 
(X-l) in hex grid

change of X-direction found

convex curve:
add column below and 
including last point

GI=GI+NC(LY) 
ENDIF 

ENDIF
ELSE IF (DX.LT.O) THEN 

GI=GI-NC(Y)

IF(DX.EQ.-2) GI=GI-NCOFF(Y) 

IF(XFLAG) THEN

cases)
concave curve: 

add column below 
last point

IF(...FORTRAN code to test for

subtract column below
current point 

subtract column passed over
at (X+l) in hex grid 

change of X-direction found

cases)

GI=GI-(NC(LY)+1) 

ELSE (must be one of

concave curve:
subtract column below and 
including last point

cases)

GI=GI-NC(LY) 
ENDIF 

ENDIF

ELSE IF(XFLAG.AND.DY.GT.O) THEN 
GI=GI+1

ELSE IF(.NOT.XFLAG.AND.DY.LT.O) 
GI=GI+1

ENDIF

convex curve :
subtract column below 
last point

'-I-
THEN 

(r
DX=0,
add in current point

DX=0,
add in current point

Table 1.
Update of GI for each code situation, in which
(DX,DY) are X and Y grid components of current chain code,
(X,Y) are grid coordinates at end of current code vector,
LY is Y coordinate of origin of current code vector,
XFLAG=.TRUE. if last nonzero DX was greater than zero, 

=.FALSE, if last nonzero DX was less than zero,
NC(Y) is count of grid points in column below (X,Y),
NCOFF(Y) is count of grid points in column below X+1,Y).
Both NC and NCOFF use vertical column to and including
base level Y=0.
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EXAMPLES

A set of four examples illustrate the algorithm's proper 
handling of 4, 6, 8, and 12-way encoded polygons. Figure 3 
is a simple 4-way encoded polygon. Table 2 lists specific 
values computed during the sequential processing of the 
chain (see Table 1 for details) with the resulting values 
inserted into Equations 3 and 1 for the area in terms of 
cells. Figure 4 shows a 6-way encoded polygon containing a 
concavity, and Table 3 traces the area computation for it. 
An 8-way encoded polygon with a concavity and a pinched 
perimeter, that situation which Equation 3's modified GI 
value corrects for, is given in Figure 5 with the corres 
ponding trace of area computation in Table 4. The last 
example, Figure 6, is a 12-way encoded polygon with a 
pinched perimeter and a hole. Table 5 lists the important 
values of the algorithm's execution, including the specific 
GB values which go into Equation 2.

SUMMARY AND CONCLUSIONS

The practical application of Pick's Theorem, an area cal 
culation method for regular point grids in general, to 
specific grids used with Freeman encoding has been illus 
trated by this paper. The theorem was proven geometrically 
for 4, 6, and 8-way encodings. The modified area equation 
was introduced which allows a similar calculation on the 
irregular point grid of 12-way encoding, and this equation 
was also informally proven. The algorithm sketch describes 
an implementation of these area calculations on properly- 
encoded cartographic polygons, and the utility of the al 
gorithm on holes and pinched perimeters has been illustra 
ted.

While Freeman encoding may not be in widespread use with 
cartographic data, it does offer several advantages. The 
grid point-based structure allows easy integration of point, 
line, and area data into a single coordinate scheme. The 
chain codes themselves represent a vector format within a 
cellular structure, which permits data conversion between 
Freeman encoding and both vector and raster data. This 
quality of Freeman encoding, combined with its capacity for 
data volume compression, support its use in the new hybrid 
vaster data structure (Peuquet, 1983). Due to the versa 
tility in dealing with various grid formats and the se 
quential nature and resolution-independence of the process 
ing, the application of Pick's Theorem to Freeman-encoded 
polygons enhances the use of these data formats for carto 
graphic data.
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Y-0
Y=0

X=0 X = 0

Figure 3.
4-way encoded polygon: 
code chain=( 1,1,1,0,0,3,3 

2,3,2), GB=10.

Figure 4.
6-way encoded polygon: 
code chain=(2,l,l,0,0,5,3, 

3,4,0,5,3,3), GB=13.

Table 2. Trace of algorithm execution for Figure 3 polygon

CODE 111
DX 000
DY 111
GI 000

0033232 
1 1 0 0-1 0-1 
0 0-1-1 0-1 0 
8 12 12 12 10 11 11

GI' = (11) - (10) = 1 (Eq. 3) 
AREA = (1) + 1/2*(10) -1=5 (Eq. 1)

Table 3. Trace of algorithm execution for Figure 4 polygon,

CODE 2110053340533 
DX -111221-2-2-121-2-2 
DY 11100-100-10-100 
GI 0 3 5 9 13 15 12 10 10 12 13 13 13

GI' = (13) - (13) = 0 (Eq. 3) 
AREA = (0) + 1/2*(13) - 1 = 11/2 (Eq. 1)
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Y-0
Y=0

X=0 1 X=0 1

Figure 5.
8-way encoded polygon: 
code chain= (3,2,1,0,7,0,6, 

3,5,4,7,4), GB=12.

Figure 6.
12-way encoded polygon: 
code chain=(3,1,8,10,3,1,1, 

10,7,6,9,11,2,1,9,7,5,6), 
GB=18.

Table 4. Trace of algorithm execution for Figure 5 polygon

CODE 3 
DX -1 
DY 1 
GI

6354 
0 -1 -1 -1

7 4 
1 -1

1 0-1 0-1 1-1 0-1 0 
6 10 13 16 16 13 12 11 13 13

GI 1 = (13) - (12) = 1 (Eq. 3) 
AREA = (1) + 1/2*(12) -1=6 (Eq. 1)

Table 5. Trace of algorithm execution for Figure 6 polygon,

CODE 318 10 311 10 769 11 219756 
DX 02-110211-1-201110-2-2-2 
DY 3 1-2-2 3 1 1-2-1 0-1-1 2 1-3-1 1 0 
GI 0 9 5 8 9 15 18 21 18 15 16 18 20 23 23 22 21 20 
GB

GB

GB

ODD

1222345 

EVEN,UPPER

0011111 

EVEN,LOWER

0001111

7 8 8 9 10 11 12 12

GI 1 = (20) - (18) = 2 (Eq. 3)
AREA = l/2*[(2) + 1/2*(12) + 2/3*(2) + l/3*(4) - 1] = 29/6

(Eq. 2)
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