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ABSTRACT

Some curve-fitting procedures may be described entirely in geometric terms, 
and, thus, may be shown to depend exclusively on the geometry (relative 
positions) of the points to which the curve is fitted. These procedures 
necessarily exhibit desirable invariance properties under large families of 
transformations such as the family of all affine transformations because the 
underlying geometry of the fit points behaves predictably under the families of 
transformations. Although the procedures are defined geometrically in order to 
make proofs of invariance straightforward, nevertheless, the algebraic 
representations of the fitted curves may be drived analytically. Conversely, 
whenever one can show that a curve-fitting procedure has an underlying 
geometric definition, then one may take advantage of geometric invariance 
properties.

GEOMETRY AND TRANSFORMATIONS

Geometry, which refers to the intrinsic relations among points, lines, curves, 
and areas, may be examined from the point of view of transformations of the 
plane. Geometric properties may be described and even defined in terms of 
those transformations. A classic illustration of such a property is the 
fundamental notion of congruence in classical Euclidean geometry. Two 
geometric figures are said to be congruent if one can be moved onto the other; 
or, perhaps more accurately, if the whole plane can be moved with a rigid 
motion or isometry so that one figure is brought into perfect alignment with 
the other. Euclidean geometry is concerned with those properties which are 
preserved by rigid motions of the plane (i.e., rotations, translations, reflections, 
and combinations of the three). Congruence involves nothing more than 
belonging to the same equivalence class of figures under all rigid motions. The 
statements of the Euclidean theorems, axioms, and propositions are given in 
terms of properties and descriptors which are left unaffected by rigid motions: 
those properties include being parallel, being perpendicular, bisecting angles or 
line segments, and lying on a straight line or lying at a fixed distance from 
some other object. For example, if line A is perpendicular to line B, and if a 
rigid motion is applied to the space, transforming line A into line A1 and line B 
into line B1, respectively; then line A1 will be perpendicular to line B'.

Euclidean geometry in the plane is simply the study of those properties which 
do not change when rigid motions are applied. Classical spherical geometry 
deals with invariant properties under rigid motions of the sphere. Hyperbolic 
geometry, another non-Euclidean geometry, does not involve rigid motions in 
the usual sense. Nevertheless, it does involve the study of properties which 
remain invariant under a family of transformations; and by a kind of duality, 
one could define a kind of albeit unnatural "rigidness" in terms of those 
transformations.

The family of rigid motions is not the only family of transformations one might 
wish to apply to the plane. Other families give rise to other geometries. One 
might add the family of contractions and dilations (uniform shrinking and
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expanding maps) to create a geometry of similar figures (same shape but 
different sizes). In this expanded geometry, two similar figures are 
equivalent. In this geometry of similar figures, absolute distances are lost; only 
relative distances have meaning. Different families of transformations 
preserve different properties or relations of lines, points, curves, and areas. By 
recognizing the properties preserved by a specific family of transformations, 
one may use those properties to define geometrically stable entities, entities 
which themselves do not vary under the transformation family. A curve-fitting 
procedure can be such an entity.

CURVE-FITTING PROCEDURES

A curve-fitting procedure will be understood to mean an exact curve-fitting 
procedure throughout. An exact curve-fitting procedure has as its input an 
ordered finite sequence of n points (pj, p2, P3,...,pn) and returns a continuous 
one-dimensional curve which passes through the n points (p^, p2, P3,...,pn) in 
order. Exact curve-fitting procedures are used in cartography, for example, to 
reconstruct smooth representations of irregular linear features from shape files 
containing only coordinate values for critical or extreme points. Considerable 
storage can be saved if only a few points on a river feature are kept on the file 
and the river is drawn from those points using a curve-fitting algorithm.

* 
Pi

Figure 1. Four Fit Points and Cubic Polynomial Fit.

The above figure illustrates the result of fitting a cubic polynomial curve: 
Y = AX3 + BX2 + CX + D, to the four fit points plf p2, p3, and p4.

The cubic fit is not a very good curve for a number of reasons. In the first 
place, a cubic polynomial will not fit every possible sequence of four points in 
the plane. Because the value of Y is expressed as a function of X, there can be 
only one Y value for each X value. The curve can only move from right to left 
or from left to right, but not both ways; there can be no doubling back. 
Nevertheless, if the points p^, p2, Pj, and p^ have their X coordinates strictly 
increasing or strictly decreasing when the points are expressed in their 
sequential order, then (and only then!) can a cubic curve be fitted to the four 
points.

PROCEDURES WHICH COMMUTE WITH TRANSFORMATIONS

Given a sequence of points, a curve-fitting rule or procedure, and a 
transformation of the plane, one may perform two different composite 
operations:

First, one may apply the curve-fitting rule to the original points to produce a 
curve in the plane; then one may transform the plane to create a transformed 
image of the curve, which will be a new curve.
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Alternatively, one may transform the original points by looking at their images 
under the transformation of the plane; then apply the curve-fitting rule to the 
transformed points.

If the resulting curves of the two composite procedures are the same, then the 
procedure is said to commute with the transformation.

In some cases the procedure will not only fail to commute with the 
transformation, it may even fail to be applicable to the transformed sequence 
of points. A simple example of such a complete lack of commutativity is the 
cubic polynomial fit rule or procedure with a 90° rotation of the plane for the 
transformation applied to the four points given in the example on the previous 
page:

ROTATE
9O°

FIT 
CUBIC

ROTATE
90C

Figure 2. Transformation and Procedure do not Commute.

The cubic polynomial fit procedure will commute with some transformations of 
the plane. Reflections in the X-axis or in the Y-axis will commute with fitting 
a cubic to an acceptable set of four points. Indeed, reflections in any vertical 
or horizontal line will commute with the cubic fit procedure. Uniform (i.e. 
linear) stretching or shrinking along either axis is a transformation which will 
commute with the cubic polynomial fit procedure. Rotations in general will not 
commute, although a rotation of 180° will. The collection of all 
transformations which commute with a curve-fitting procedure for every 
suitable sequence of fit points will form a group of transformations. The larger 
the group of transformations, the better the curve-fitting procedure. A good 
curve-fitting procedure has for its group of transformations a group which 
contains all of the rigid motions. A good curve-fitting procedure also works for 
an arbitrary sequence of points in the plane. If this is the case, then congruent 
sequences of fit points will result in congruent fitted curves, no matter where 
in the plane the fit points are positioned (as a congruency class).

A curve-fitting procedure which can be applied to any sequence of points in the 
plane and which commutes with all rigid motions will be called Euclidean or 
geometric. Euclidean curve-fitting procedures are coordinate-free in the sense 
that they do not depend on the positioning of the coordinate axes. Although a 
Euclidean procedure may be defined in terms of X's and ITs, a change of origin
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or axes will not alter the final product, a fitted curve through the given 
points. This is due to the fact that coordinate changes correspond to rigid 
motions of the plane as well.

The notion of rating a curve-fitting procedure in terms of the transformations 
that it commutes with can be specialized even further. Instead of focusing on 
the quantity of transformations which commute, one may seek procedures 
which commute with a few distinguished transformations. It may be 
particularly desirable to commute with a special family of transformations (for 
example, transformations which define an entire class of map projections). 
Curve-fitting procedures which commute with all such map projections will 
produce consistent results on every map image belonging to the projection 
class.

DEFINING CURVE-FITTING PROCEDURES

So far, "good" and "better" curve-fitting procedures have been described in 
terms of external associated groups of transformations. No constructive direct 
approaches to curve-fitting procedures have been given. The only example 
given so far, the cubic polynomial fit, has fallen far short of being a Euclidean 
procedure. In this section the relation between Euclidean procedures and 
Euclidean geometry and its invariants provides the key to designing good 
procedures.

Large groups of transformations of the plane.
Two very important groups of transformations of the plane are:

(1) The affine group; or affine transformations; and

(2) The group of rigid motions or isometrics.

The affine group properly contains the group of rigid motions. Every rigid 
motion is an affine transformation.

Every affine transformation, T, has the form:

T((x,y)) = (ajx + b^y + clf a2x + b2y + c2), 

for some real constants a^, b^, e-,, a2, b2, and c2,

such that (a-jb2 - a2b^) is not equal to zero. 

Every rigid motion further satisfies;

(i) 8.1 &n + bib2 = 0; 
(ii) a-^2 +b^2 = 1; 
(iii) a22 + b22 = 1.

Every rigid motion is a translation (vertical and/or horizontal shifting), a 
rotation, a reflection, or a composite or combination of two or more of these.

Every affine transformation is either a rigid motion, a stretching or shrinking 
on each of the axes (with possibly unequal stretching or shrinking on each of the 
axes), or a composite or combination of the two.

Affine transformations preserve lines, collinearity, and parallelism. Affine 
transformations do not preserve (but rigid motions do preserve) 
perpendicularity, distances, angles and angle bisectors. This is clear in the 
example:
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Figure 3. The Affine Transformation: T(x,y) = (3x,y).

In order to illustrate the manner in which known invariant properties can be 
used to define curve-fitting procedures, the following elementary example is 
presented:

Given a sequence of points { p - , p „, p ,>,..., p }, let the "curve" for 
that sequence be the polygonal line made up of straight line segments linking 
successive points p^ and P\+-t for i=l, 2,...,n-l. The curve-fitting procedure 
given here could be described as, "link the successive points by straight-line 
segments."

AFFINE
TRANSFORMA 

TION

SEGMENT 
FIT

AFFINE
TRANSFORMA 

TION

Figure 4. Commutative Diagram for Polygonal Line Fit.

This procedure commutes with all affine transformations precisely because 
affine transformations send straight line segments into straight line segments
and a line segment is uniquely determined by its end points. A transformation 
which did not preserve straightness of lines would not commute with this fit 
procedure.

Admittedly the polygonal-line fit procedure is not a very interesting or elegant 
procedure; nevertheless, it illustrates one Euclidean (even affine) fit procedure 
and a simple means of proving that the procedure indeed commutes with all
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affine transformations. The next example is more complex and the curves 
produced are more attractive. The underlying approach is similar, however; 
and the resulting curve-fitting procedure is both Euclidean and affine.

A GEOMETRIC CURVE-FITTING CONSTRUCTION

This section describes a geometric construction for adding points to a curve one 
at a time. The procedure may be iterated in order to place points along a curve 
with any desired density. In particular, for raster plotters or raster display 
devices, the point generation procedure may terminate when a connected 
sequence of pixels or raster dots has been selected.

In order to demonstrate the commutativity of this procedure with all affine 
transformations, the identical construction steps are carried out on the image 
points of the original fit points; and the corresponding constructed points and 
line segments are verified to be carried over by the affine transformation at 
each step.

Assume for this first case that the sequence of points, p^, P2»...,pn> does not 
include inflections in the following sense:

For all i = 2,3,...,n-2, the points pj_j and pj+2 lie on the same side of the line 
determined by pj and PJ+I .

WITH INFLECTION WITHOUT INFLECTION 

Figure 5. Point Sequences With and Without Inflections.

For this first example it is also assumed that the section of the curve that is 
being built is an interior section linking the points pj and PJ+J, where i is 
neither 1 nor n-1. (The construction required at inflections and at end 
segments is different.)

Observe that if a point sequence is without inflections in the above sense, then 
the image sequence under any affine transformation is also without inflections.

Let pi, powPn De a sequence of n points without inflections, and let 
p, 1, p«,...,p', be the corresponding sequence of image points under some affine 
transformation. Link all successive pairs of points in each sequence with a 
straight line segment; and then link all alternating pairs of points with 
additional straight line segments (shown dashed in figure 6). Next construct 
line lj through each point p= parallel to the straddling secant p^ pj+1. Do the 
same for each Pj1. These lines will serve as tangent directions at pj and pj1 
respectively for the curves to be defined. Notice that the corresponding 
constructions in the original space and in the affine image space are preserved 
by the affine map; that is, the parallel lines, for example, constructed in the 
affine image space are the affine images of the parallel lines constructed in the 
original space. Clearly the point of intersection of a pair of constructed lines
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in the original space is mapped by the affine transformation to the intersection 
of the image lines.

Pi*:

Figure 6. First Stage of Geometric Construction.

Let q= (resp. qjf) be the intersection of L and lj+j (resp. ljf and Ij+j 1). Consider 
the triangles Pi<3|Pi+i and Pi'qj'Pj+i'- The second triangle is the image of the 
first under the aifme transformation. The next drawing illustrates the 
construction of a smooth curve through pj and pj+^ which is tangent to pjqj at 
P| and is tangent to Pj+^qj at PJ+J.

Figure 7. The Triangle for Enclosing the Curve.

Once a triangle has been constructed (in any fashion), the remaining procedure 
is a lopping or whittling procedure described entirely in terms of geometric 
characteristics of the triangle, characteristics which are preserved under affine 
transformations. A locus of points is described which is readily verified to be a 
smooth curve.
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The curve described will be the upper boundary of the figure obtained by 
successive reduction of the triangular region. First remove a small similar 
triangle containing qj by constructing a line parallel to Pjpj+i halfway between 
qj and Pjpj+i and discarding the upper triangle and keeping the trapezoid below 
it. (See figure 7) Let c be the center of the upper base of the trapezoid, e^ 
and 62 the end points of the upper base as shown in figure 7 above. Continue by 
"lopping" the ends at e^ and 62 from the triangles Pjejc and Pj+j^c as was done 
at q, again producing two new trapezoids. Construct triangles at the upper 
corners of each trapezoid, continue lopping until edges become rounded more 
and more.

With each successive lopping, add the center point of the new upper base of the 
trapezoid formed to the locus of the curve, since that center point will never 
be lopped off in any subsequent stage of the locus definition.

Whether one "lops triangles" or "adds" successive center points of trapezoid 
bases, the result is the same smooth curve. The curve is the closure of 
constructed points.

It is useful to observe that the triangles, trapezoids, and midpoints of the upper 
bases described in the construction above are all transformed to corresponding 
elements by affine transformations. Therefore, the curve fitting procedure 
described for the piece of the curve between pj and Pj+i is both Euclidean and 
affine. It is straightforward to verify that the curve win be tangent to p^ at 
p= and tangent to p^+^qj at pi+1 . By the earlier specification of the tangent 
directions for all pieces of the curve, it is clear that the tangent directions fit 
together at all interior points without inflections.

In order to finish the curve-fitting procedure description, one needs to describe 
how to handle inflections and end points. Procedures to handle inflections and 
end points which commute with all affine transformations can be developed, 
but the ones that the authors have been experimenting with are too elaborate 
to be presented here. One possible approach to constructing an affine 
procedure involves building triangles (using affine-invariant triangle 
constructions) about the fit points so that a triangle lopping procedure may be 
applied to each triangle.

Figure 8. Possible Outcome of A Triangle Building Procedure.

After triangles have been constructed about fit points, another means of 
building affine-invariant curves involves finding piecewise parametrized cubic 
polynomial coordinate functions:

Xj(t) = AjQ + Ailt + Aj2t2 + Aj3t3, and

where the parameter t above is chosen to be total cumulative straight line 
distance between successive points in the fit point sequence, the end points of
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the function pieces are the fit points, and the tangent directions match the 
slopes of the triangle legs. By specifying the parameter, the end points and the 
tangents at those end points, the cubic equations are completely defined on 
each interval between points pj and PJ+J; and the equations mesh at the interval 
end points. (See White, Pagan, and Saalfeld, "On Fairing a Curve Through a 
Sequence of Points," for details.)

More generally, the building blocks may be higher order piecewise parametrized 
polynomial coordinate (PPPC) functions:

X.(t) = A iQ+ Au t + A i2 t2 + ... + A in t n ,

Y.(t) = B. fl + B. lt+ B. 2 t2 + ... + B. n t n ,

defined for t in some interval, [ t^t^ ].

The collection of PPPC functions is especially useful for building affine- 
invariant curve-fitting procedures because of the following result:

Lemma. If (X(t), Y(t)) is a curve given by parametrized polynomial coordinate 
functions of degree less than n in the parameter t on the interval [ tj, tj+1 ], 
and if T is an affine transformation; then T((X(t), Y(t))) is also a curve given by 
parametrized polynomial coordinate functions of degree less than n in the same 
parameter t on the same interval [ tj, tj+1 ].

The proof follows from the explicit representation of an arbitrary affine 
transformation seen earlier:

T((X,Y)) = (a 1 X + bjY + c lf a 2 X + b 2 Y + c 2 ),

The lemma guarantees that affine transformations will commute with the 
family of building blocks (PPPC functions) as a whole, moving one building 
block of the family into another building block of the same family. The trick of 
a good curve fitting procedure is to match building blocks to sequences of 
points in such a way that the affine transformations move the point sequences 
in the same way they move the associated building blocks. Differentiability 
and, therefore, the existence of a tangent direction for curve points is always 
preserved by affine transformations because the composition of a linear map 
with a differentiable map is also differentiable.
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