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ABSTRACT

Mathematical projections have facilitated the expression of 
complex mapping data in modes convenient to it's distrib 
ution and manipulation. The various planimetric displays of 
geographic data are a common example of this utility. To 
date, perceptual limitations have restricted most mapping 
operations to three dimensions. By the sequential applica 
tion of appropriate transformation equations to the rectang 
ular coordinates of an n dimensional point it is possible to 
display forms and functions in the two and three dimensional 
spaces with which we are familiar. The simple relationships 
between the projection elements and the minimal distortions 
of the projected figures using the isometric projection make 
this a suitable schema to discuss here. No attempt will be 
made to address rotation or translocation of the projected 
figures; nor will proofs of the operations be discussed, as 
these considerations are beyond the scope of this paper.

INTRODUCTION

Beginning in 1637 with the Geometry of Descartes, analytic 
geometry has provided the essential foundation for the map 
ping of the universe. Descartes limited his discussion to 
two dimensions; and the technique has since been expanded to 
visually describe numerical data in three dimensions. How 
ever, due to our ability to directly perceive in three dim 
ensions at most (exclusive of our perception of time, in 
time) three dimensional space has been the effective limit 
of our mapping abilities.

Various graphic techniques have been developed to allow the 
display of forms in fewer dimensions than those occupied by 
the objects displayed. Mathematical projections are an ex 
ample of such techniques.

This paper will describe the geometry of one such projection. 
It will illustrate an algorithm for developing isometric 
transformation equations for mapping n dimensional forms in 
n-1 spaces. Through a sequential application of these equa 
tions it will become possible to graphically display infor 
mation from any number of dimensional spaces in the two and 
three dimensional spaces in which cartographers usually com 
municate .

CONCEPTS AND CONVENTIONS

Isometry and Axonometry
The isometric projections are a special class of those pro 
jections known as axonometric. Axonometric projections are
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distinguished in that all lines of projection are normal to 
the space upon which the projection is made. Isometric pro 
jections / as used here, will be understood as that set of 
axonometric projections where the direction angles from all 
of the n space coordinate axes to the lines of projection 
are equal. Figure 1 illustrates these ideas as applied to 
projections from three dimensional space into two dimen 
sional space.

FIGURE 1.

Notation Conventions
Due to the unlimited dimensional spaces to which this pro 
cess may apply, certain notation conventions for angles, 
coordinates and axes will be modified. For this discussion 
the following notation will be observed:

A)The rectangular coordinates of a point will be expres 
sed as (A,B,C,...) rather than as (X,Y,Z,...). In this 
context the terms A,B,C,... will be refered to as the 
"coordinate elements." Similarly, the respective axes 
are termed the A axis, B axis, C axis,... .

B)Points in n space will be denoted as Pn , with coord 
inates (An ,Bn ,...). Points in n-1 space shall be deno 
ted as Pr _]_, with coordinates (An_,,B _,,...). The 
coordinates of points P and P _,so expressed shall be 
known as the "coordinate sets".

C)The direction angles from the axes to any point shall 
be labled d , )3 ' T • • • -

D)The angular distance between the n projected axes in 
n-1 space are all equal to each other; the angular
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distance will be expressed by the symbol ^ .* 
In addition, each of the coordinate, axial and angular exp 
ressions will be subscripted to reflect the appropriate 
dimensional space.

These labeling conventions will ultimately prove inadequate 
for dimensional spaces such that n>24, and may prove inco 
nvenient where the english and greek symbols are assigned 
to constants and variables by previous custom. I have ado 
pted this notation only to facilitate the present discus 
sion, and will defer a final resolution till the future.

PROJECTION PROCESS

Coordinate Grids
As all coordinate sets will express the rectangular coord 
inates of a point, the coordinate axes are perpendicular to 
each other in their appropriate dimensional space. To pro 
ject the n axes of the coordinate grid of n space it suf 
fices to generate the median and vertices of the unique 
equilateral simplex polytope in n-1 space.** The median of 
this figure represents the origin of the n space grid as 
projected into n-1 space, and the lines extending from this 
median through the vertices represent the n projected axes. 
The negative extension of these axes is the reverse exten 
sion through the median from the appropriate vertex. The 
vertices are situated at a distance, h, from the median. 
The value of h will be determined below.

The angular distance between each of the projected vertices 
is determined as follows:

(eq. 1) S „ , = Cos

This is illustrated with the projection into two dimensions 
of the three dimensional coordinate grid using the median 
and vertices of an equilateral triangle (the equilateral 
simplex polytope in two dimensions), where:

(eq. 2) S = Cos'1 I A= 120°

The scale along the projected axes, 1 _, , is related to the 
scale in n space, 1 , by a function or the direction angles 
to the lines of projection in n space ( CL-. , |3, ,...), where:

(eq. 3) C^ = j3 1 = ... = Cos'1 I —— i-j —— | ; and

(eq. 4) 1^ = ln 'Sin0 1 = ln -Sin ^ = . . . 

If a true scale is desired for the projected figure in n-1

* This symbol, especially when subscripted, must not be 
confused with S_ (Aleph-sub-_ series) which are used in tran- 
sfinite number theory as the cardinality of infinite sets.
** Simplex Polytopes are the n dimensional figures having 
n+1 vertices, expressed by the Shlaffli symbol (3,3,. ..,3). 
The tetrahedron, a simplex polytope in 3 space, has the 
Shlaffli symbol (3 , 3) : 3 triangular faces at each vertex.
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space let ln_^=l. The resulting figure is more properly 
termed an isometric drawing; but involves no additional 
distortions than those resulting from the projection. Dep 
ending on the intended use of the projection either scale 
may be employed.

Geometric Relationships Between Grids
To facilitate the remainder of the discussion the following
assumptions will be made regarding the relationship between
the projected n space grid and the rectangular n-1 space
grid:

A)The origin of both grids is coincident, and labeled 0.
B)The highest order axis on both grids (those having the 

largest alphabetic expression where A<B<...<Z) are 
coextensive. The highest order axial pair are copla- 
nar. The highest ordered n-1 combinations are cospat- 
ial in the appropriate number of spaces, (see Fig. 2)

Cn-1

ORIENTATICN OF GRIDS AND 
ELEMENTS OF THE PROJECTION

-Bn-1

n dimensional 
sinplex polytope.^ 
(regular •' 
tetrahedron in-~ 
3 space)

Bn_i-,axis,
axis and -Cn^ axis and the

An _n-1

FIGURE 2.

-Cn-1

The Projected n Space Grid
The vertices of all equilateral simplex polytopes are equi 
distant from it's median at a distance, h, which is related 
to the side length, s, by the following equation:

(eq. 5) h = _________n-1

By assigning a coordinate set (0,0,..,0) in n-1 dimensions 
to the median and orienting the vertices of the simplex 
polytope for n-1 space as noted above, the n vertices take 
the coordinate elements as listed in table 1; and the sum 
of all like elements must equal 0. Table 1 is calculated 
assuming s=l.
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TABLE 1.* 
n-1 Space coordinate Elements

Bn-1 Cn-1 Dn-l En-•n-1

-0.500000 -0.288675 -0.204124 -0.158114 -0.129099

0.500000 -0.288675 -0.204124 -0.158114 -0.129099

0 0.577350 -0.204124 -0.158114 -0.129099

0 0.612372 -0.158114 -0.129099 

0 0 0.632456 -0.129099'2=0 2=0 2=0 2=0

Thus, to calculate the n-1 dimensional coordinates of the n 
vertices of the respective simplex polytope, oriented as 
notedf it is sufficient to calculate the value, h. This 
value is assigned as the highest order coordinate element 
in n-1 space to the highest order n dimensional axis. The 
lower order axes are defined by the remaining vertices, 
which have a value, c, where:

(eq. 6) c = -(j^i")

The vertices of an equilateral triangle so oriented with 
s = 1 will then have the coordinates : Vertexn = (A ,B ,

n~A" 3 '= "(-0.50000,-0.2886) B 3 = (0 . 5000 ,-0 . 2886) 

C 3 = (0,0.5773) See Figure 3. & Table 1.

In order to calculate the direction cosines between any n-1 
rectangular coordinate axis and the various projected n 
dimensional projected axes, plane trigonometry yields:

fLu n_1 One; cos = §."-* • fnc 'Y = —r" n-1 h , Los / n_ 1 h

Cos/?n) = -.2886 
-.5773 

= -.500

-An -l

-0.5000,-0.2886)

Cosan-«~ -.5773 

= -.8661 
Ctn-( = 150- 

An -l

FIGURE 3.

*The n-1 coordinate elements for the n vertices are constr 
ucted from the appropriate n-1 x n matrix, from table 1, 
taking the first n-1 elements in each of the first n rows.
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This calculation of direction cosines is repeated until all 
necessary values are generated. Tables 2,3 and 4 list the 
values for projections from three space, four space and 
five space respectively:

3 Space 

Axes
'S

TABLE 2. 
Direction Angles fron 2 Space Axes

a2 fe

S B3

150

30

90

240

120
0°

s8•n 
O
£

TABIE 3. 
Direction Angles fron 3 Space Axesg3 03 73

A,} 14 46.7356103 118°. 1255056 109°. 4712206

B4 35°.2643897 118°.1255056 109°.4712206

C4 90° 19°. 4712206 109°. 4712206

D4 90° 90° 0°

TABLE 4. 
Direction Angles Fron 4 Space Axes

142°.2387561 117°1573328 108°.8292311 104°. 4775112

37°. 7612439 117°.1573328 108°.8292311 104°.4775112

90° 24°.0948425 108°.8292311 104°. 4775112

90° 90° 14°. 4775112 104°. 4775112

90° 90° 90° 0°

Transformation Equations
Since the n coordinate elements of a projected point, P 
will each be located on it's corresponding axis at a dist 
ance from the origin specified by the numerical value of 
each particular element, these points define the vertices 
of another simplex polytope in n-1 space. This new simplex 
polytope will not, in most cases, be equilateral. The n-1 
dimensional coordinates of these vertices are a function of 
the direction angles to the appropriate projected n space 
axis upon which they are situated.

The projected point Pn-1 is the median of this second 
simplex polytope. To calculate the n-1 dimensional coord 
inates for Pn_T/ the coordinates for each of the n new ver 
tices is separately determined. Next, the median value for 
each of the n like elements is calculated, and the result 
ing set of median values is assembled as the coordinate set 
of the point Pn-i•
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(eq. 8) A -SAB
pn-l -^—- ' pn-l

Bm

Thus far we have assumed a scale factor between the two 
grids of 1:1. This assumption allows for the generation of 
either isometric projections or isometric drawings. The 
following set of equations combines the operations describ 
ed in equations (8) and (9); and provides for the applicat 
ion of the desired scale factor, 1 _, . The equations are 
listed for projections from three space into two space, 
four space into three space and five space into four space. 
Further levels of projection may be developed from the pre- 
ceeding operations and observations.

(eq.10) A2 =1 2 -((A3 »Cos 150°)+(B3 -Cos 30°)) • 

(eq.ll) B 2 = 1 2 . (((A3 +B3 ). Cos 120°)+C3 )

(eq.12) A3 = 1 3 ' ( (A4 'Cos 144°. 7356103) + (B 4 « Cos 35°. 2643897) ) 

(eq.13) B 3 = l 3-( ( (A4 +B 4)-Cos 118°.1255056)+ 

(C 4 -Cos 19°.4712206) )

(eq.14) C = 1«( ( (A+B+C)« Cos 109°. 4712206)+D)

(eq.15) A4 =1 4«( (A5-Cos 142°.2387561) + (B5 -Cos 37°. 7612439) ) 

(eq.16) B 4 =l 4-( ( (A5 +B5 )-Cos 117°. 1573328)+

(C 5 -Cos 24°0948425) ) 

(eq.17) C 4 =1 4»( ( (A5 +B5 +C 5 ). Cos 108°. 8292311) +

(D5 - Cos 14°.4775112) ) 

(eq.18) D 4 =1 4'( ( (A5 +B5 +C5 +D 5 ). Cos 104°. 4775112) +E S )

Order of Processing
As the stated intent of this paper is to introduce a meth 
od for generating images in two and three dimensions of 
forms and functions extant in higher dimensional spaces, 
the equations developed above must be processed in desc 
ending order; from n space into n-1 space, then from n-1 
space into n-2 space, etc. Once the projection is made 
into three dimensions any of the existing methods of pro 
jection into two dimensions may be employed. However, a 
certain consistency of results is lost if the projection 
schema is changed.

APPLICATIONS

As with any mapping operation, it is the responsibility of 
the cartographer to determine the appropriate projection 
method for the display of the information. To date, the 
options for mapping higher dimensional spaces has been 
quite limited. Hopefully, this is now a temporary state
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of affairs.

A complete list of possible applications for this type of 
projection is unnecessary; indeed, it would be impossible 
to delimit. However a suggestion of the potential for such 
a system may be gleaned from the following discussion of 
the relativistic curvature of the universe; "The analogy," 
visualizing the two dimensional space of a plane curving 
around the surface of a sphere,"collapses because it is 
hopeless to imagine what the extra spatial dimension looks 
like. No one has ever seen it." Callahan (1976) We may 
still be unable to see in these spaces; but we may now vis 
ualize constructs in them, and we may manipulate those con 
structs to our purposes.

The following set of illustrations are various regular 
n dimensional polytopes from the indicated number of dim 
ensions projected using the above described processes.

TESSERACT 
Four Space 
Regular 
Tesseroid

Five Space 
Equilateral 
Simplex Polytope

Four Space 
Equilateral 
Simplex 
Polytope

FIGURE 4.
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Six Space Regular 
Tesseroid

Five Space Regular 
Tesseroid

FIGURE 5
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