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ABSTRACT

The most common representation of a plane curve in a digital computer 
system consists of an ordered set of points implicitly joined by 
straight line segments. An algorithm is presented which attempts to 
reduce the number of points in this representation while retaining the 
curve's salient features. The algorithm is compared with two other 
published procedures.

INTRODUCTION

General Probleip
When a plane curve is represented by a subset of its points, two re 
quirements arise immediately:
(a) the number of points included in the subset should be minimized to 

lessen the resources required in storing and processing the curve,
(b) the subset selected should be such that the polygon formed by 

joining the member points with straight line segments matches the 
original curve within some acceptable tolerance.

Note that in other contexts the 'straight line segments' of (b) could 
be replaced with 'circular arcs', 'cubic splines', 'conic segments', or 
some other curve family; this work deals only with the straight line 
segment case.

Clearly, (b) can be satisfied by increasing the size of the subset; we 
need some way to find the smallest sufficient subset. In developing 
such an algorithm we must be mindful of a third constraint:
(c) the processing required to select the reduced points should be kept 

to a minimum.

Application to Cartography
Consider the problem of rendering the same coastline repeatedly on a 
number of separate maps as an example of the practical aspects of this 
problem. The coastline may have been digitized at high resolution and 
stored in a computer data base. The required maps could be at various 
scales, requiring that only a subset of the data base be used for each 
map, to provide the proper generalization of coastline features and 
effective use of the plotting hardware.

To avoid the cost of having several copies of the coastline at differ 
ent resolutions stored in the data base, an efficient reduction algori 
thm is required which can produce the desired subset at only a small 
additional cost over that of a straight sequential read.
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(c)

Figure 1. (a) A section of the 500 fathom depth contour off the Scotian 
Shelf. The number at the left is the number of points in the line. (b) 
The same contour overlaid with a reduced line fit using a centred band 
(NW=1), the tolerance used (TOL) is indicated by the diameter of the 
circle at the left and the width of the shaded band; (c) shows a second 
fit using a floating band (NW=10).

Figure 2. These lines have been fit to the same depth contour shown in 
figure 1. The same parameters were used as in line (c) of figure 1 ex 
cept for TOL which was halved for each successive fit.
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Additional Requirements
After consideration of the practical problems associated with automatic 
cartography we find that there are additional features we would like to 
see in the reduction algorithm:
(d) works with open as well as closed curves;
(e) avoids systematic deviations from original curve (even within tol 

erance) ;
(f) prefers members of original set for inclusion in the reduced set 

(i.e. interpolation minimized);
(g) promontories not blunted indiscriminately;
(h) eliminates small closed curves in the furtherance of cartographic

generalization (must use a test which produces results in line with
the decisions a cartographer would make).

With the exception of (h) t these further requirements need not compro 
mise the algorithm's ability to be used for non-cartographic work (as 
long as attention to them does not make the algorithm significantly 
more expensive to use).

DEVELOPMENT

General Solution
The first step in developing the required algorithm is to quantify what 
is meant in (b) by 'match within some acceptable tolerance'. One way 
is to require that a band of width TOL, centred on the reduced polygon, 
include within it the original curve. The value TOL then becomes a 
parameter driving the reduction algorithm. Algorithms which use this 
fit criterion will be called 'centred band* algorithms.

For cartographic applications however, a second (looser) definition is 
often useful: for each segment of the reduced polygon, some band of 
uniform width TOL must exist which contains both the polygon segment 
and that section of the original curve. This will be referred to as 
the 'floating band' criterion; it allows very narrow (but long and 
straight) anomalies to be removed when reducing the curve (e.g. a 
coastline broken by a small river).

The floating band criterion also allows fewer polygon segments to 
represent the curve to the same (numerical) tolerance than is allowed 
by the centred band approach. An illustration of the two methods is 
shown in figure 1 and the effect of various values of TOL in figure 2.

In consideration of (c) we want to process the points in sequential 
order and compute the reduced set during a single pass. In general 
terms, the solution will be obtained by finding a band which contains 
two consecutive points in the original curve, then adjusting this band 
for each subsequent point so that it includes all points under consid 
eration. When a point is found for which such an adjustment is not 
possible, the first and last points which did fit are used as vertices 
of the reduced polygon. The process is then repeated starting with the 
latest polygon vertex.

Practical Algorithm
The algorithm presented here uses the first point to fix one degree of 
freedom of a line through the centre of the tolerance band, leaving a 
single degree of freedom for fitting the band to subsequent points. 
That freedom can be viewed as the angular orientation of the band.

Since the band's orientation wi11 be constrained within two extreme 
angular positions, the centre lines of these two limiting positions are
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maintained by the algorithm. Both lines pass through the starting 
point and form the edges of an acceptabi 1 ity wedge. Each subsequent 
point must come within TOL/2 of this wedge, otherwise the last point to 
fit will become a new vertex in the reduced polygon. One or both edges 
of the wedge will usually be adjusted with each point until a new 
vertex is required.

This approach allows the new vertex to fall near one edge of the 
tolerance band or anywhere inside it. The initial vertex however, has 
been restricted to the centre of the band. This is halfway between the 
criteria defined above because the tolerance band is centred at one end 
and floating at the other.

If instead of using the last point to fit as the new vertex, we use the 
nearest point to it which is in or on the wedge, the new algorithm 
becomes a strictly centred band procedure.

A floating band algorithm can also be derived from the above by keeping 
track of several wedges simultaneously, in addition to the wedge start 
ing at the last polygon vertex. These additional wedges can start 
around the circumference of a circle of diameter TOL centred on the 
last vertex. When a point is found which is further than TOL/2 from 
one of the wedges, that wedge is dropped from the active set. Only 
when the last wedge is dropped does the last point which did fit become 
the new vertex.

The number of wedges (NW) is a parameter characterizing the algorithm. 
The author has implemented an algorithm which uses a centred band 
criterion when NW=1 and a floating band criterion for NW>1; this allows 
the best method to be selected for each application. Figure 5 shows 
several reductions of the same curve with different values of NW.

The centred band method outlined above can be improved slightly by 
using several extra wedges on the first segment and using the starting 
point of the last surviving wedge as the first vertex instead of the 
initial point of the curve. Credit for this idea belongs to Ivan Tomek 
who embodied something similar in his 'Algorithim F 1 (Tomek 1974).

Delays in Assignment of Initial Points
Features of a curve which have dimensions less than TOL are removed 
during reduction. If the entire curve (whether open or closed) has no 
dimension greater than TOL it seems reasonable to eliminate it com 
pletely. This consideration is independent of (h) above; here it is 
simply a matter of removing those curves which are so small that they 
would otherwise be reduced to just two points separated by less than 
TOL (or two identical points in the case of closed curves).

A practical algorithm can, in consideration of the above, delay treat 
ing the initial point of the curve until a point is found which cannot 
fit in the same circle of diameter TOL as all the preceding points. 
When this happens, the centre of the circle which has fit all points 
thus far can be used as the initial point.

If the final point in the curve is reached before the initial circle is 
exceeded, the entire curve can be dropped. Otherwise if the final 
point is intended to close the curve it should be replaced with the 
initial vertex of the reduced polygon.

Closed curves which exceed TOL in one dimension only would be reduced 
to degenerate curves of zero area and only two distinct points; these
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(c)

(d)
Figure 3. The 500 fathom depth contour is again fit with the same 
parameters as in figure 1 (b) except for bump angle (ANG). The effects 
of varying ANG can be seen here. Note that for a feature to be consid 
ered as a bump it must usually exceed TOL in both height and width. 
The values of ANG used here are (a) 0, (b) 60, (c) 120, and (d) 180.

1499

Figure 4. The coastline of Sable Island including some of its ponds, 
(a) Prior to reduction. (b) After reduction with FACTOR = 0.0; notice 
that the smallest features have been removed (no dimension > TOL). (c) 
After reduction with FACTOR =1.0 and (d) with FACTOR = 2.0; use of 
FACTOR = 3.0 would completely remove the island itself. Other reduc 
tion parameters were held fixed in (b) through (d). As elsewhere, the 
number above each curve gives the number of points in the curve.
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can also be removed (the next section will discuss other features which 
exceed TOL in only one dimension). For this reason (and to effect the 
improvement mentioned in the last paragraph of the preceding section) 
assigment of the initial polygon vertex can be delayed beyond the 
acceptance of the initial curve point to when the second polygon vertex 
is obtained.

Meeting Cartographic Requirements
The procedure outlined thus far will largely satisfy (a) through (f). 
Requirement (g) demands that we define another parameter to quantify 
what is meant by 'indiscriminatly blunting promontories'. Lets say 
that if the vertex angle of a bump on the curve is less than ANG and 
its height and width are greater than TOL then the bump is a signifi 
cant feature which should not be smoothed out in the process of finding 
the minimal polygon.

Figure 3 shows several reductions of a curve with different values of 
the parameter ANG. A value of 110° seems to produce good results for 
cartographic applications. Theo Pavlidis has also found a bimodality 
in vertex angles of text characters with a trough between 110° and 130" 
(Pavlidis 1983); this suggests that vertex angles on either side of 
this range are subjectively perceived as different features.

Because it is applicable only to cartography (h) can be looked at 
separately. Under this requirement we want to drop those closed curves 
which would appear too smal 1 on a map (in one or both dimensions). A 
simple test of the maximum and minimum extents of the curve would not 
do the trick however; a thin but curved feature (e.g. a horseshoe lake) 
would pass the test even if it was so thin on the map that both banks 
overlapped.

One test that was found to do the job fairly well is: 

area of closed curve

perimeter
> TOL x FACTOR (1)

where FACTOR is set to about one or two. Curves which fail the test 
are dropped. Figure 4 illustrates the control over auto-generalization 
provided by the adjustment of FACTOR in (1).

COMPARISONS

Imp1imen t a t ion
The author has implemented the algorithm outlined above as a FORTRAN 
subroutine suitable for use with a variety of application programs. A 
listing of this subroutine (which is too long to be included here) is 
available from the author.

This subroutine has been used for removal of redundant points from 
line-followed digitizer output, reduction of map data from a high- 
resolution data base to an appropriate level of generalization for 
larger scale maps, and matching general graphics output to the hardware 
resolution of a particular plotter.

The four parameters TOL, ANG, NW, and FACTOR provide the facility for 
tuning the method to the particular application without requiring 
maintenance of separate subprograms.

Douglas and Peucker Algorithm
This is basically a centred band algorithm (Douglas and Peucker 1973)
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Figure 5. The effects of varying the number of wedges (NW) can be seen 
in these reductions of the depth contour shown in figure 1 (a). The 
first reduction (a) was done with NW=1 and uses a centred tolerance 
band; (b) NW=3, (c) NW=5, and (d) NW=10 use a floating band.

(b)

Figure 6. These reductions of the 500 fathom contour were done using 
the same tolerance as in figure 5; (a) was done using the Douglas and 
Peucker algorithm which uses a centred band. The Bettori and 
Falcidieno algorithm was used to produce (b), it uses a floating band,

158



with their 'offset tolerance 1 corresponding to half the band width. It 
has received wide recognition among cartographers as it was the first 
published procedure which attempted to address their specific needs.

Figure 6 (a) shows a reduced line produced by this procedure, it can be 
compared with figure 5 (a) which is also a centred band reduction. 
Note that although the same tolerance was used in both reductions, the 
method described here was able to find a smaller polygon.

Dettori and Falcidieno Algorithm
Dettori and Falcidieno (1982) describe a floating band algorithm which 
employs the convex hull of a subset to decide if a new polygon vertex 
is needed. Unfortunately, the example FORTRAN subroutine included in 
their paper contains several critical logic errors. Substantial debug 
ging was necessary before the example subprogram accurately implemented 
the algorithm they presented.

This done, the method worked very well; as can be seen in figure 6 (b). 
This reduction was done at the same tolerance as that of figure 5 (d) 
and their method found the smaller polygon. Of course our use of the 
bump angle test (controled by ANG) means that extra (cartographically 
significant) points will be included beyond those required simply to 
satisfy the tolerance criterion.

Objective Comparison
To provide an objective basis for comparsion, a coastline file of 
13,216 points was processed by these algorithms with equivalent set 
tings of their control parameters. The input data included 794 coastal 
islands as well as a single 7437 point coastline curve.

The auto-generalization feature was not used for this comparison 
(FACTOR = 0.0) but 750 islands were eliminated by our algorithm because 
they were smaller than TOL in one or both dimensions.

The results are listed in table I. A CPU second is a measure of the 
computing effort used to perform the fit. The last two columns show 
the results of a second comparison run on the coastline segment only 
(no is lands).

TABLE I - Comparison Data

Method Points Output CPU sec.
NW = 1 667 57.859
NW = 10 481 53.692
Douglas and Peucker 2766 58.936
Dettori and Falcidieno 2015 61.198

A more thorough and detailed comparison of these and other reduction 
procedures is in preparation and will be published separately.

CONCLUSIONS

The algorithm presented here provides extended control over the reduc 
tion process via four control parameters. It has several features of 
particular relevance to automatic cartography and provides a useful 
degree of auto-generalization. The flexiblity afforded by this proce 
dure allows it to serve diverse applications where a single algorithm 
may have been considered inadequate.

The techniques used here can also be used with non-linear piecewise
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curve fitting. Circular arc fitting could be especially useful as some 
plotting hardware now accepts circular arc input.

The problem of auto-generalization also needs much more work with such 
things as merging nearby islands, deleting branching rivulets, and 
either widening or eliminating narrow channels offering a particularly 
tough challenge.
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