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ABSTRACT

Curve drawing in automated cartographic applications traditionally consists of 
the following sequence of operations when raster or dot plotters are used to 
produce the maps or when the map is reproduced on a raster VDT:

1. Select a curve type or family, such as splines.

2. Select a member of that curve family.

3. Select points on the curve and approximate with a polygonal line 
consisting of vectors.

4. Convert vectors to a series of dots called the raster image of the 
vectors and plot those dots or illuminate them as pixels on a screen.

The user rarely has control over the vector-to-raster conversion. In general the 
conversion routine is automatic and transparent to the user. The user may, 
however, choose his curve and its evaluation vectors more judiciously if he is 
aware of the conversion procedure. In this paper common vector-to-raster 
conversion routines are examined in order to select vectors more efficiently 
and improve appearance of the eventual raster image and the speed of the 
computations.

New approaches for generating curves and vectors are presented here. These 
approaches anticipate eventual raster distortions and try to minimize them. 
Improved appearance of the final product is the principal objective of these 
new approaches, although speed in computing and drawing the map curve 
features will be improved as well with the new procedures.

INTRODUCTION

Automated cartography is moving beyond the "stick maps" of some of the 
original DIME files to publication quality graphics. The Census Bureau is 
studying means of improving appearance of its computerized cartographic 
products; and one area of interest is smooth curve drawing. Many irregular 
features such as rivers and shorelines are stored as sequences of critical points 
on digital files. In the past those critical points were merely linked with 
straight line segments to produce the familiar DIME "stick map." Now, at the 
time of drawing, the curves are reconstructed from the critical points using 
algebraic and analytic interpolation; and the curves are then plotted using 
additional software and hardware approximation and conversion methods. The 
Census Bureau uses a raster plotter for hard copy and both vector and raster 
displays for VDT's. When the output is raster or pixel images, the traditional 
procedure for constructing a curve image includes the following steps:

1. Identify fit point sequence and a family of analytic solutions (curve 
types, such as splines).
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2. Select (i.e. compute) an analytic solution from the family (compute 
coefficients or other "closed" form).

3. Select points along the analytic solution to use for a piecewise linear 
approximation with vectors or line segments.

4. Convert the vectors to a raster image.

The fourth step is usually done automatically by the hardware. (Curves other 
than vectors may also be converted directly to rasters by some hardware 
routines. If those types of curves can be fitted directly to the critical points, 
then a step may be eliminated.)

Each of the above steps can affect the appearance of the final image adversely 
by introducing error due to rounding or approximation or by selecting a final 
image which the particular display device does not show off well. This paper 
will examine the way in which each step can compound problems of 
appearance. It will further explore means of shortcutting the four steps; and, 
finally, it will explore means of anticipating and reducing or avoiding problems 
in the final step by judiciously choosing curve families, curves, and vectors in 
the earlier steps.

The principal emphasis in this examination of curve drawing routines is on 
appearance. Curve drawing for cartography is not primarily concerned with 
precision of representation, although a degree of fidelity is required. A city 
must be on the correct side of a river. Beyond that the cartographer cares 
about the looks of the wiggles in the river.

For screen graphics on a Video Display Terminal (VDT), speed of computation 
and appearance are tradeoffs. Several very fast vector-to-raster routines 
based on incremental arithmetic have been developed for raster displays. 
These fast conversion routines generally produce considerable aliasing or 
"jaggies," abrupt pixel pattern interruptions. Other slower routines using 
partial pixel illumination reduce aliasing by blending edges with gray areas. 
Still other routines smooth lines by using multiple pixel thicknesses which 
effectively conceal the incremental shifts of the line center. For all of the 
above routines, the incoming vector is a given—the routine handles it as best it 
can. For this paper, however, the vector may also be adjusted (within reason) 
to influence the final raster image. This paper will focus on single pixel width, 
single intensity illumination representations in order to simplify discussions and 
illustrations. Nevertheless, methods introduced here may be extended to 
drawing with gray scale and drawing with multiple pixel width lines.

PROBLEMS WITH THE FOUR-STEP APPROACH TO CURVE-DRAWING

This section will illustrate some of the difficulties arising at each stage of the 
four-step approach to curve-drawing given in the introduction. One may work 
backwards from step 4 and step 1, focusing on appearance difficulties at each 
step:

Step 4. Convert the vectors to a raster image.

The basic problem here is that some vectors convert to nicer raster images 
than others. Vertical, horizontal, and 45° slopes are the best, of course. Long, 
nearly vertical or nearly horizontal vectors for which the raster approximation 
contains a rare abrupt step are most striking to the eye. More frequent steps 
seem to be integrated (averaged) more readily, somewhat in the fashion that 
the eye integrates the gray pixels used for anti-aliasing.
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Figure 1. Raster Approximations of Various Vectors.

The above observation suggests that step 3, the selection of vectors (or rather 
their end points), might include some criteria for avoiding vectors that do not 
convert well to raster images.

Alternatively one might work with a finite collection of vectors as building 
blocks, allowing only those vectors which "rasterize" well to enter into the 
approximating polygonal line. One might assign measures of smoothness to 
raster images of a small collection of vectors and other measures of 
smoothness to junctures of such vectors, since the eye also perceives 
irregularities at such junctures. If this is done, the problem of vector 
approximation to a curve could be made combinatorial and finite, with the 
proper solution being that combination of vectors which optimizes the overall 
smoothness measure.

Step 3. Select points along the analytic solution to use for a piecewise linear 
approximation with vectors.
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Figure 2. Raster Approximations of Regular Octagons.

For example, if one were to choose 8 points on a circle to approximate the 
circle by eight vectors, a regular octagon would be a good choice. However, 
not every regular octagon is equally good for raster conversion. A regular 
octagon with horizontal and vertical legs is preferable to one with legs sloping 
slightly off the usual axes because of small angle representation problems seen 
earlier.
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Circle size versus pixel size comes into play in the selection of the 
approximating octagon as well. The 45° sloping octagon sides can never be 
exactly as long as the horizontal legs, for instance. On discrete grids of rasters 
or pixels, rounding is an inevitable contributor to distortion.

The following series of illustrations reveals several difficulties which may 
occur after a smooth analytic solution has been derived for a curve-drawing 
problem. Additional problems regarding arriving at a smooth analytical 
solution will be treated in the next section. Here the focus will be on 
rounding: first from curve to vector end points, then from vector to raster 
image.

Curve Vector Raster Curve Vector Raster

ROUNDING WITHOUT ROUNDING

Figure 3 . Effects of Rounding and Not Rounding Vectors 
Before Conversion to Raster Images.

The points which are chosen to fall on a smooth analytic representation of a 
curve may be rounded to points on a discrete grid before vectors are 
determined (as shown on the left above) or they may be rounded when the 
vectors are converted to raster images (right drawing above).

Rounding vector end points to grid points prior to raster conversion has several 
advantages:

If the vectors are computed with discrete grid end points, the raster 
images will be easier to study for irregularities.

Furthermore, raster images of vectors whose end points are grid points 
may always be endowed with a central point symmetry which guarantees a 
more regular appearance. That symmetry may be attained by utilizing an 
incremental pixel selection procedure such as Bresenham's linear 
algorithm from each end of the vector to the center point. (See figure 4)

A third advantage of rounding vectors to grid points before converting to 
the raster image is that the initial directional move (of the 8 possible) for 
an incremental procedure will always be in the correct sector. This 
property of the initial directional move is a consequence of positioning 
the vector end point exactly on the grid point, thereby eliminating 
rounding effects at the first pixel placement. Since this result will be 
true for all vectors entering a particular juncture, smoothness at 
junctures will be improved. (See figure 5)
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Figure 4. Results of Bresenham's Algorithm Applied 
from both Ends to the Center.

Figure 5. Sector Choices for Initial Directions.

However, the raster images will suffer more total displacement in general if 
the vectors are rounded prior to raster conversion.

If, on the other hand, the vectors are not rounded to the discrete grid prior to 
conversion to raster images, then the illuminated pixels will be closer to the 
continuous polygonal line curve approximation whose points actually lie on the 
curve. Nearness to the true smooth curve does not guarantee a smoother raster 
image, as the illustration below indicates.

In addition the raster image may exhibit abrupt atypical directional 
discontinuities precisely at the junctures of two approximating vectors, further 
degrading the smooth appearance of the raster image. An angle of 50 , for 
example, is represented by a sequence of pixels of steps predominantly 45° with 
some infrequent steps of 90°. A step of 45° is better at a juncture with 
another vector because it is only 5° from the intended direction. If both 
vectors at a juncture have large and opposite atypical steps, the effect can be a 
directional change nearly 90° greater than the intended directional change. 
(See figure 6)
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Figure 6. Dangling Pixel Due to Unrounded Vectors.

Vector selection options to approximate a continuous curve (step 3) provide 
many opportunities for improving ultimate appearance of the raster image. 
The number of vectors, the placement of vector end points along the curve, and 
the rounding of those end points prior to converting to raster images all affect 
the output. The previous step can also influence appearance:

Step 2. Select an analytic solution from the family of curves.

In general this solution will be uniquely determined by the curve family and 
some additional constraints placed on the curve by the user. Those constraints 
may involve specifying tangent values or restrictions on higher derivatives. 
The constraints, while somewhat arbitrary, are added to guarantee uniqueness 
and replicability of the fitting procedure. The complexity of the solution is 
directly related to the number of constraints that the user may specify. For 
example, a polynomial of degree n can handle n+1 constraints.

Instead of picking constraints such as higher derivative values which merely 
serve to guarantee uniqueness of the analytic solution, the user may seek 
constraints which facilitate the vector selection procedure in step 3. For 
example, if the curve passes through grid points, then rounding the vector end 
points will not be necessary. Because intermediate values on the curve are 
critical in determining the vectors to be used, a procedure which anticipates 
later steps is one which chooses the particular analytic solution based on 
properties of intermediate values.

It is not generally easy to specify intermediate curve values prior to specifying 
the curve, although some such procedures do exist (see the paper by Pagan and 
Saalfeld in these Proceedings). A greater potential for improving eventual 
raster appearance lies in the selection of the curve family itself:

Step 1. Select a family of curves.

For some families of curves, the subsequent steps may be more easily 
implemented or simplified. One example of such a family is the family of 
parametrized polynomial coordinate functions:

X(t) = A0 + Ajt + A2t2 + ... + ^t11.

Y(t) = B0 Bt
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The theory of finite differences permits any polynomial to be evaluated at 
regular intervals by means of successive incrementing operations. For 
example, linear functions have a constant increment, quadratics have a 
constantly increasing or linear increment, etc.; thus intermediate values of 
polynomials may be generated using incremental arithmetic only. Methods 
which exploit the incremental relations are currently being studied at the 
Census Bureau.

One final possibility which arises in relation to the last example is that of 
skipping steps in the four-step procedure. An incrementally generated curve 
for a curve-fitting procedure has great potential for direct raster 
specification. If one can eliminate the need for vector approximation (steps 2 
and 3) and move directly to step 4, potential gains in processing speed will be 
considerable.

The idea of skipping steps 2 and 3 is not new. Several slow procedures 
illuminate all pixels near to a curve simply by evaluating the curve on a very 
dense set of points. The principal deficiency of such an approach is the poor 
conversion results for some curves. As seen in figure 6, the nearest raster 
image to an arbitrary curve may contain some dangling pixels which degrade 
appearance. The new focus proposed here is on appearance. A procedure which 
selects pixels on a curve successively based on incremental tests can eliminate 
dangling pixels due to rounding and simultaneously increase computation speed.
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