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ABSTRACT

Recent reductions in the cost of computer hardware makes the 
use of "supercomputers" and array processors to execute car 
tographic algorithms more practical. However, considerable 
reorganization in algorithm implementation may be required 
to make efficient use of these architectures. The purpose of 
this article is to acquaint the reader with the general con 
cepts of vector computers and some of the design issues 
which arise in adapting cartographic algorithms for execu 
tion on these machrnes. An example involving modelling of a 
faulted surface is presented.

INTRODUCTION

Though the speed of computer hardware has doubled approxi 
mately every three years since the mid-1950's, this trend 
has become difficult to maintain for standard sequential 
machine architectures. Recent advances in computing speeds 
have been made using alternative architectures such as array 
processors (APs) and "supercomputers" which employ multiple 
computing elements in parallel operation. These machines 
will be collectively termed vector processors in this paper.

Until recently, vector machines were so expensive that their 
use was justified only in special situations for which they 
were designed such as the solution of partial differential 
equations encountered in continuum mechanics calculations. 
However, the ever decreasing price/performance ratios for
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these machines, particularly for APs, have made it more fea 
sible to use them in selected cartographic applications. 
Investigations currently in progress at ZYCOR are aimed at 
assessing the suitability of the following algorithms for 
execution on vector hardware:

o gridding from point data,

o gridding from contour data,

o grid refinement

o grid smoothing, and

o grid contouring.

The purpose of this paper is to acquaint the reader with the 
general concepts of vector computers and some of the design 
issues which arise in adapting cartographic algorithms for 
execution on these machines. An example involving modelling 
of a faulted surface is presented.

CONCURRENCY IN SOFTWARE

The successful application of a parallel machine to a real- 
world problem depends strongly on the amount of parallelism 
inherent in the algorithm being executed. Hardware de 
signers have analyzed typical programs for various applica 
tions to determine baseline requirements for their machines, 
i.e., software has driven the hardware design. In this sec 
tion some of the characteristics of these constructs are 
examined. Some seemingly sequential processes may be re 
organized to enhance their parallel nature while others are 
inherently sequential and do not use parallel hardware 
facilities efficiently.

Strongly Parallel Processes
Parallel processes are often executed on sequential machines 
in a DO loop. Consider the process of multiplying each ele 
ment of an array A by the corresponding element of an array 
B to produce an array C. In FORTRAN this might be accom 
plished by

DO 1=1,N
C(I) = A(I)*B(I) 

ENDDO

where N is the number of elements to be produced. This cod 
ing is equivalent to

C(1) = A(1)*B(1 ) 
C(2) = A(2)*B(2)

C(N) = A(N)*B(N)
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A cursory inspection of these operations shows that N inde 
pendent pairs of operands are used to produce N results. A 
conventional computer will produce C(1), C(2), ..., C(N) 
sequentially. Since the operands are independent, that is, 
they are all defined before execution of the loop begins, 
the calculations could all be done simultaneously on a com 
puter with N multiplier units. It is these kinds of con 
structs that APs are designed to execute efficiently.

Reorganization To Enhance Parallel Content
Some kernels may be coded in such a manner as to mask their
parallel nature. One such example is

set 3 
DO 1=1,N

D = A(I)*B(I,3)
C(I) = 1.0 + D**2 

ENDDO

Note that the parallelism of this kernel is destroyed by the 
calculation of the temporary scalar D on each iteration of 
the loop. While this is probably a good implementation for 
a sequential machine (subscript calculation and primary 
storage are minimized) an alternative implementation which 
exploits the parallelism is:

set 3 
DO 1=1,N

C(I) = A(I)*B(I,3) 
ENDDO 
DO 1=1,N

C(I) = C(I)*C(I) 
ENDDO 
DO 1=1,N

C(I) = C(I) + 1.0 
ENDDO

This triple loop configuration requires more coding than the 
original version but is more desirable in a concurrent pro 
cessing environment. On some computers the length of the 
machine code necessary for this implementation is shorter 
than for the former since each loop generates instructions 
which invoke hardware rather software implementations of 
loops.

Constructs Which Reduce Parallelism
Some kernels are inherently sequential in nature and 
usually cannot use concurrent processing hardware effici 
ently. Sources of interference in a kernel include:

1. A subroutine call
2. An I/O statement
3. Nonlinear indexing of array subscripts 
b. Branches to other sections of code
5. Recurrence relations (use of the results of an iteration 

on subsequent iterations)

Implementations with nonparallel kernels may often be re 
structured to move the interference source outside the 
parallel areas. This may involve additional coding and 
storage but the result may be much higher execution speeds.
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AN EXAMPLE FROM FAULTED SURFACE MODELLING

Processing of fault data in filtering of subsurface grid 
models presents an example of the need for a new programming 
perspective in using vector processors efficiently.

Biharmonic Grid Filtering
A well accepted goal in gridding random point data is a sur 
face with minimum total curvature consistent with the input 
data. The minimum curvature criterion leads naturally to the 
use of a biharmonic smoothing filter (Briggs, 1974). The bi- 
harmonic operator is implemented using a 13 point stencil as 
shown in Figure 1. Normalized weights are applied to each of 
12 nodes surrounding the current target node to obtain a new 
"filtered" value for the target node. The operator may be 
applied in a number of ways. One method which provides 
rapid convergence on sequential machines is successive over- 
relaxation .

Faults in Subsurface Modeling
Gridding of random point data is a standard cartographic 
problem. In the energy exploration industry the input data 
and the resulting models usually represent subsurface geo 
logical formations. In this domain, geological faults mark 
discontinuities in the subsurface. They are drawn by 
geologists or geophysicists on basemaps and hand digitized 
to provide input to gridding and filtering algorithms. 
Information should not propagate across a fault during math 
ematical operations such as grid filtering. In situations 
where a standard biharmonic operator would extend across a 
fault a special operator must be developed. Figure 2 shows 
an example of this situation.

While it is not hard to write software to perform grid fil 
tering in the presence of faults, it is difficult to make 
such code run efficiently. Since everyday problems can in 
volve grids with more than 500 rows and columns and thou 
sands of fault segments, efficiency is important.

As can be seen in Figure 2, a fault which impacts the filter 
operator at a grid node will cross one of four search lines 
radiating from that node. Therefore, in performing bihar 
monic smoothing in the presence of faults it would seem that 
the "natural" order of operations is:

Loop over grid nodes

Loop over search directions to gather 
surrounding node values

Loop over fault segments to detect fault crossings 
of search lines

Apply appropriate biharmonic operator.

While this approach is acceptable on sequential hardware, 
different methods are required for best performance on array 
processors or supercomputers.
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Figure 1(a). Biharmonic Operation Stencil. Point to be 
filtered is at x. Values at points marked 
by o are used in filtering x
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Figure 1(b). Weights of Points in the
Biharmonic Operator Stencil
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Figure 2. Biharmonic Operation Stencil. Point to be fil 
tered is at \. Values at points marked by o are 
used in filtering x. Values at points marked by 
6 are used in standard operation but are block 

ed by fault in this case.

The Solution for Vector Hardware
A difficulty with the algorithm described in the previous 
section is that it requires looping over many fault seg 
ments, no more than one of which is likely to intersect a 
search line at a critical point. This requires use of con 
ditional logic, something which should be avoided in vector 
software.

The problem description along with the programming guide 
lines provided in Section 2 provides hints on how to develop 
better vector code. First, the fault data tends to occur in 
short segments. If all segments were short enough it would 
be possible to guarantee that each individual segment 
crossed no more than one search line. Second, search direc 
tions for nodes on the same grid row or column or the same 
45 degree profile overlap. Therefore, initial intersections 
finding can be organized on the basis of shared search lines 
rather than on individual grid nodes. Finally, loop reorgan 
ization is often an effective "trick" for optimizing perfor 
mance on vector hardware. In this case, the best loop 
reorganization involves processing the fault data first 
rather than almost last. Combining these ideas leads to the 
following approach which is more suitable for vector pro 
cessing. Three software modules are used. The first is:

Normalize the fault data to the grid .coordinates

Loop over fault segments to detect and mark fault 
crossings of search lines

Sort and store fault crossing for each search 
direction

The second module is: 

Loop over grid nodes

Loop over search directions with fault crossings 
to develop special biharmonic operators for each 
grid node position.
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The third module is: 

Loop over grid nodes

Loop over search directions to gather surrounding 
node values

Apply appropriate biharmonic operator.

For each node, values of zero are assigned to biharmonic 
filter weights which correspond to data points across 
faults. This assignment is completed in the second module so 
that the third module requires no direct information about 
the fault structure beyond what is encoded in the filter 
operator for each node. Many filter operators are developed, 
but a simple data structure allows them to be shared by dif 
ferent grid nodes.

In the first module fault data is processed to guarantee 
that each segment is shorter than the separation between 
adjacent grid rows and columns. Longer segments are sub 
divided. Fault data is also normalized to the minimum grid 
X coordinate and intercolumn spacing so that the coordinates 
of each column in the grid and the corresponding vertical 
search profile are numbered 1 to N. Combining short segments 
and this normalization mean it is possible to generate sig 
nificant information by performing the following operation 
for each fault segment ((xi , yi ) , (xi + 1 , yi + 1 )) .

Ki = ABS ( INT(xi + 1 )-INT(xi) ) * MAX ( INT(xi + 1),INT(xi ) ).

Here ABS, INT, and MAX are respectively the absolute value 
function, the integer truncation function, and the maximum 
value function. A little thought should convince the reader 
that Ki is 0 if the segment does not cross a vertical search 
profile (because INT(xi) = INT(xi+1)) and is the number of 
the vertical search profile crossed otherwise.

The ABS, INT, and MAX functions are implemented as vector 
operators in nearly all supercomputer and array processor 
subroutine libraries. After the calculation of the Ki, it 
is possible to continue with calculation of search line 
intersection points by simple, vectorizable, algebraic oper 
ations. These intersections can be so_rted and stored for 
latter retrieval. Equivalent operations can be performed on 
horizontal and 45 degree offset search profiles.

OBSERVATIONS AND CONCLUSIONS

Though the investigations are still in progress, several 
observations may be recorded at this time.

To take full advantage of these specialized hardware 
architectures, major organizational changes are usually re 
quired to the software. These changes are usually associ 
ated with processing information in large groups or with 
avoiding conditional processing.

Algorithms organized for vector computers usually require
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significantly more memory for the storage of intermediate 
results such as in the preceding example. As such, only 
machines which support a large memory address space are 
should be considered for cartographic applications such as 
grid filtering and contouring. Hardware-software configura 
tions which include sustained data transfers to a disk drive 
or host computer will probably leave the computational units 
idle a large fraction of the time.

Implementation of an algorithm for vector processing re 
quires that the implementation be tailored for the hardware 
rather than the programmer. As such, such programs are usu 
ally harder to comprehend which imposes an extra burden on 
the maintenance programmer. However, once the programmer 
has shifted his thought processes to vector mode and the 
algorithm has been reformulated, transportation of the code 
to other vector machines should be straightforward.

A final observation is that the 64-bit accuracy offered by 
some vector computers is not necessary for most cartographic 
computations such as grid initialization, filtering, and 
contouring.
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