
VECTORIZING SURFACE MODELING ALGORITHMS

David L. Humphrey
Steven Zoraster

ZYCOR, Inc.
2101 South IH-35

Austin, Texas 78741
(512) 4^

BIOGRAPHICAL SKETCHES

David L. Humphrey is a Project Manager in ZYCOR's Research
Division. Mr. Humphrey received a Master's degree in
Mechanical Engineering from the University of Texas in 1978.
He has previously worked for Lawrence Livermore Laboratory.
At ZYCOR, Mr. Humphrey is responsible for development of
gridding and grid processing algorithms and is in charge of
developing cartographic applications for array processors.

Steven Zoraster is Manager of ZYCOR's Research Division.
Mr. Zoraster received a Master's degree in applied Mathe
matics from UCLA in 1975. He has previously worked in the
field of radar and signal processing. At ZYCOR, Mr.
Zoraster has been responsible for research in cartographic
automation, software optimization, and advanced algorithm
development.

ABSTRACT

Recent reductions in the cost of computer hardware makes the
use of "supercomputers" and array processors to execute car
tographic algorithms more practical. However, considerable
reorganization in algorithm implementation may be required
to make efficient use of these architectures. The purpose of
this article is to acquaint the reader with the general con
cepts of vector computers and some of the design issues
which arise in adapting cartographic algorithms for execu
tion on these machrnes. An example involving modelling of a
faulted surface is presented.

INTRODUCTION

Though the speed of computer hardware has doubled approxi
mately every three years since the mid-1950's, this trend
has become difficult to maintain for standard sequential
machine architectures. Recent advances in computing speeds
have been made using alternative architectures such as array
processors (APs) and "supercomputers" which employ multiple
computing elements in parallel operation. These machines
will be collectively termed vector processors in this paper.

Until recently, vector machines were so expensive that their
use was justified only in special situations for which they
were designed such as the solution of partial differential
equations encountered in continuum mechanics calculations.
However, the ever decreasing price/performance ratios for

293

these machines, particularly for APs, have made it more fea
sible to use them in selected cartographic applications.
Investigations currently in progress at ZYCOR are aimed at
assessing the suitability of the following algorithms for
execution on vector hardware:

o gridding from point data,

o gridding from contour data,

o grid refinement

o grid smoothing, and

o grid contouring.

The purpose of this paper is to acquaint the reader with the
general concepts of vector computers and some of the design
issues which arise in adapting cartographic algorithms for
execution on these machines. An example involving modelling
of a faulted surface is presented.

CONCURRENCY IN SOFTWARE

The successful application of a parallel machine to a real-
world problem depends strongly on the amount of parallelism
inherent in the algorithm being executed. Hardware de
signers have analyzed typical programs for various applica
tions to determine baseline requirements for their machines,
i.e., software has driven the hardware design. In this sec
tion some of the characteristics of these constructs are
examined. Some seemingly sequential processes may be re
organized to enhance their parallel nature while others are
inherently sequential and do not use parallel hardware
facilities efficiently.

Strongly Parallel Processes
Parallel processes are often executed on sequential machines
in a DO loop. Consider the process of multiplying each ele
ment of an array A by the corresponding element of an array
B to produce an array C. In FORTRAN this might be accom
plished by

DO 1=1,N
C(I) = A(I)*B(I)

ENDDO

where N is the number of elements to be produced. This cod
ing is equivalent to

C(1) = A(1)*B(1)
C(2) = A(2)*B(2)

C(N) = A(N)*B(N)

294

A cursory inspection of these operations shows that N inde
pendent pairs of operands are used to produce N results. A
conventional computer will produce C(1), C(2), ..., C(N)
sequentially. Since the operands are independent, that is,
they are all defined before execution of the loop begins,
the calculations could all be done simultaneously on a com
puter with N multiplier units. It is these kinds of con
structs that APs are designed to execute efficiently.

Reorganization To Enhance Parallel Content
Some kernels may be coded in such a manner as to mask their
parallel nature. One such example is

set 3
DO 1=1,N

D = A(I)*B(I,3)
C(I) = 1.0 + D**2

ENDDO

Note that the parallelism of this kernel is destroyed by the
calculation of the temporary scalar D on each iteration of
the loop. While this is probably a good implementation for
a sequential machine (subscript calculation and primary
storage are minimized) an alternative implementation which
exploits the parallelism is:

set 3
DO 1=1,N

C(I) = A(I)*B(I,3)
ENDDO
DO 1=1,N

C(I) = C(I)*C(I)
ENDDO
DO 1=1,N

C(I) = C(I) + 1.0
ENDDO

This triple loop configuration requires more coding than the
original version but is more desirable in a concurrent pro
cessing environment. On some computers the length of the
machine code necessary for this implementation is shorter
than for the former since each loop generates instructions
which invoke hardware rather software implementations of
loops.

Constructs Which Reduce Parallelism
Some kernels are inherently sequential in nature and
usually cannot use concurrent processing hardware effici
ently. Sources of interference in a kernel include:

1. A subroutine call
2. An I/O statement
3. Nonlinear indexing of array subscripts
b. Branches to other sections of code
5. Recurrence relations (use of the results of an iteration

on subsequent iterations)

Implementations with nonparallel kernels may often be re
structured to move the interference source outside the
parallel areas. This may involve additional coding and
storage but the result may be much higher execution speeds.

295

AN EXAMPLE FROM FAULTED SURFACE MODELLING

Processing of fault data in filtering of subsurface grid
models presents an example of the need for a new programming
perspective in using vector processors efficiently.

Biharmonic Grid Filtering
A well accepted goal in gridding random point data is a sur
face with minimum total curvature consistent with the input
data. The minimum curvature criterion leads naturally to the
use of a biharmonic smoothing filter (Briggs, 1974). The bi-
harmonic operator is implemented using a 13 point stencil as
shown in Figure 1. Normalized weights are applied to each of
12 nodes surrounding the current target node to obtain a new
"filtered" value for the target node. The operator may be
applied in a number of ways. One method which provides
rapid convergence on sequential machines is successive over-
relaxation .

Faults in Subsurface Modeling
Gridding of random point data is a standard cartographic
problem. In the energy exploration industry the input data
and the resulting models usually represent subsurface geo
logical formations. In this domain, geological faults mark
discontinuities in the subsurface. They are drawn by
geologists or geophysicists on basemaps and hand digitized
to provide input to gridding and filtering algorithms.
Information should not propagate across a fault during math
ematical operations such as grid filtering. In situations
where a standard biharmonic operator would extend across a
fault a special operator must be developed. Figure 2 shows
an example of this situation.

While it is not hard to write software to perform grid fil
tering in the presence of faults, it is difficult to make
such code run efficiently. Since everyday problems can in
volve grids with more than 500 rows and columns and thou
sands of fault segments, efficiency is important.

As can be seen in Figure 2, a fault which impacts the filter
operator at a grid node will cross one of four search lines
radiating from that node. Therefore, in performing bihar
monic smoothing in the presence of faults it would seem that
the "natural" order of operations is:

Loop over grid nodes

Loop over search directions to gather
surrounding node values

Loop over fault segments to detect fault crossings
of search lines

Apply appropriate biharmonic operator.

While this approach is acceptable on sequential hardware,
different methods are required for best performance on array
processors or supercomputers.

296

uoxoo**
•ooova*

Figure 1(a). Biharmonic Operation Stencil. Point to be
filtered is at x. Values at points marked
by o are used in filtering x

O

0
0
0

o
o

Figure 1(b). Weights of Points in the
Biharmonic Operator Stencil

297

Figure 2. Biharmonic Operation Stencil. Point to be fil
tered is at \. Values at points marked by o are
used in filtering x. Values at points marked by
6 are used in standard operation but are block

ed by fault in this case.

The Solution for Vector Hardware
A difficulty with the algorithm described in the previous
section is that it requires looping over many fault seg
ments, no more than one of which is likely to intersect a
search line at a critical point. This requires use of con
ditional logic, something which should be avoided in vector
software.

The problem description along with the programming guide
lines provided in Section 2 provides hints on how to develop
better vector code. First, the fault data tends to occur in
short segments. If all segments were short enough it would
be possible to guarantee that each individual segment
crossed no more than one search line. Second, search direc
tions for nodes on the same grid row or column or the same
45 degree profile overlap. Therefore, initial intersections
finding can be organized on the basis of shared search lines
rather than on individual grid nodes. Finally, loop reorgan
ization is often an effective "trick" for optimizing perfor
mance on vector hardware. In this case, the best loop
reorganization involves processing the fault data first
rather than almost last. Combining these ideas leads to the
following approach which is more suitable for vector pro
cessing. Three software modules are used. The first is:

Normalize the fault data to the grid .coordinates

Loop over fault segments to detect and mark fault
crossings of search lines

Sort and store fault crossing for each search
direction

The second module is:

Loop over grid nodes

Loop over search directions with fault crossings
to develop special biharmonic operators for each
grid node position.

298

The third module is:

Loop over grid nodes

Loop over search directions to gather surrounding
node values

Apply appropriate biharmonic operator.

For each node, values of zero are assigned to biharmonic
filter weights which correspond to data points across
faults. This assignment is completed in the second module so
that the third module requires no direct information about
the fault structure beyond what is encoded in the filter
operator for each node. Many filter operators are developed,
but a simple data structure allows them to be shared by dif
ferent grid nodes.

In the first module fault data is processed to guarantee
that each segment is shorter than the separation between
adjacent grid rows and columns. Longer segments are sub
divided. Fault data is also normalized to the minimum grid
X coordinate and intercolumn spacing so that the coordinates
of each column in the grid and the corresponding vertical
search profile are numbered 1 to N. Combining short segments
and this normalization mean it is possible to generate sig
nificant information by performing the following operation
for each fault segment ((xi , yi) , (xi + 1 , yi + 1)) .

Ki = ABS (INT(xi + 1)-INT(xi)) * MAX (INT(xi + 1),INT(xi)).

Here ABS, INT, and MAX are respectively the absolute value
function, the integer truncation function, and the maximum
value function. A little thought should convince the reader
that Ki is 0 if the segment does not cross a vertical search
profile (because INT(xi) = INT(xi+1)) and is the number of
the vertical search profile crossed otherwise.

The ABS, INT, and MAX functions are implemented as vector
operators in nearly all supercomputer and array processor
subroutine libraries. After the calculation of the Ki, it
is possible to continue with calculation of search line
intersection points by simple, vectorizable, algebraic oper
ations. These intersections can be so_rted and stored for
latter retrieval. Equivalent operations can be performed on
horizontal and 45 degree offset search profiles.

OBSERVATIONS AND CONCLUSIONS

Though the investigations are still in progress, several
observations may be recorded at this time.

To take full advantage of these specialized hardware
architectures, major organizational changes are usually re
quired to the software. These changes are usually associ
ated with processing information in large groups or with
avoiding conditional processing.

Algorithms organized for vector computers usually require

299

significantly more memory for the storage of intermediate
results such as in the preceding example. As such, only
machines which support a large memory address space are
should be considered for cartographic applications such as
grid filtering and contouring. Hardware-software configura
tions which include sustained data transfers to a disk drive
or host computer will probably leave the computational units
idle a large fraction of the time.

Implementation of an algorithm for vector processing re
quires that the implementation be tailored for the hardware
rather than the programmer. As such, such programs are usu
ally harder to comprehend which imposes an extra burden on
the maintenance programmer. However, once the programmer
has shifted his thought processes to vector mode and the
algorithm has been reformulated, transportation of the code
to other vector machines should be straightforward.

A final observation is that the 64-bit accuracy offered by
some vector computers is not necessary for most cartographic
computations such as grid initialization, filtering, and
contouring.

REFERENCES

Briggs, I.C., "Machine Contouring Using Minimum Curvature",
Geophysics, Vol 39., No. 1, Pages 39-48, February 1974.

300

