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ABSTRACT

The precision of geographic information systems is in sharp contrast 
to the accuracy of much spatial data, and requires a more objective 
approach than is conventional in cartography. Existing models of the 
error of cartographic lines are inappropriate for topological data 
for various reasons. We propose a model of error in choropleth data, 
with specific application to the data types found in natural resource 
inventories. One or more spatially autocorrelated continuous vari 
ables are generated, and mapped through a number of domains into a 
choropleth map with nominal attributes. Fractional Brownian surfaces 
are convenient sources of the continuous variables. The choropleth 
boundaries are subject to additional smoothing. Although the model 
is probably too complex to calibrate, it can be used to simulate 
choropleth images under a wide range of conditions, in order to 
investigate effects of error and accuracy in a variety of GIS func 
tions.

INTRODUCTION

One of the more striking results of the introduction of digital data 
handling methods to cartography has been an increased interest in the 
interrelated issues of accuracy, precision, error and generaliza 
tion. A digital system operates with a level of precision which is 
generally much higher than comparable manual methods, and often much 
higher than the accuracy of the data. For example, a point in a 
geographic information system might be represented by a pair of 
coordinates with a precision determined by the machine's floating 
point arithmetic, perhaps ten significant digits, whereas its loca 
tion on a printed map might be accurate to no more than four digits, 
and might approximate a real feature on the ground to no more than 
three. The precision of various digital operations may also be far 
higher than is justified by the accuracy of the data or the conceptu 
al basis of analysis. Poiker (1982, p.241) has compared the high 
precision of spatial data handling systems to "a person with the body 
of an athlete in his prime time and the mind of a child".

Statistical theory provides satisfactory methods for describing and 
dealing with error in scientific measurement, including surveying, 
but not to the same extent in cartography. Perkal's epsilon band 
(Perkal, 1956, 1966; Blakemore, 1984; Chrisman, 1982) has been used 
as an error model of cartographic lines in several recent studies 
(see also Honeycutt, 1986). Suppose there exists some abstract, true 
version of a line. Then the model proposes that all real representa 
tions of the line will lie within a band of error of width epsilon on 
either side of this true line. Blakemore (1984) has shown how this
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model can be used as the basis for a modified version of the point in 
polygon problem which explicitly recognizes the uncertainty in the 
location of a polygon boundary. Honeycutt (1986) has investigated 
the use of the model for distinguishing between spurious and real 
sliver polygons in topological overlay algorithms (see also 
Goodchild, 1978).

Despite the simplicity of the epsilon band concept, there are several 
reasons for believing that it is not completely satisfactory as a 
model of cartographic line error. First, although the model proposes 
that every line lies entirely within the epsilon band, we would 
expect intuitively that no such deterministic upper limit to error 
exists: instead, it would seem that larger errors are simply less 
likely. Error models of simple measurements, such as the Gaussian 
distribution, place no upper limit on the sizes of errors. Second, 
the model provides no distribution of error within the epsilon band. 
Although intuition might suggest that the most likely position for 
the real line is the centre of the epsilon band, in other words the 
true position, Honeycutt (1986) has found evidence that digitizing 
tends to produce a bimodal distribution, such that error on either 
side of the true line of some measureable amount less than epsilon is 
more likely than no error. These points suggest that a more suitable 
model would be some continuous distribution with asymptotic tails 
centred on the true line, the deterministic epsilon distance being 
replaced by a standard deviation parameter. The most suitable candi 
date would be a Gaussian distribution, or following Honeycutt (1986) 
an equal mixture of two Gaussians, one centred a distance to the left 
and one the same distance to the right.

Third, while the epsilon band and the modifications suggested above 
provide a model of deviation for a point on the line, they fail to 
model the line itself. The locations of two nearby points on the 
line are not chosen independently, but instead show a strong degree 
of autocorrelation. Furthermore, it is not clear which points on the 
line are modelled: Honeycutt (1986) analyzed the positions of 
digitized points, which are clearly not randomly and independently 
sampled from the set of all possible points on the line. So the 
error model cannot provide useful results about spurious sliver 
polygons, since these are formed not by the deviation of single 
points but by runs of autocorrelated points on both overlaid lines. 
A satisfactory error model would have to deal with the line as a 
continuum with strong autocorrelation.

The final objection to these methods concerns the nature of the data 
itself. Although it is convenient from a cartographic perspective to 
regard a line as an independently located feature with a true posi 
tion, in reality many.types of lines are subject to toplogical 
constraints, and are not independent of the areal features which they 
bound. For example a contour's position is not independent of other 
contours, since a large error in location may result in one contour 
crossing another. Contours are cartographic expressions of the value 
of some variable, often elevation, which is continuously distributed 
over the area. Problems with topological constraints on contour 
positions can be overcome if one regards error in contour position as 
an outcome of error in elevation, and concentrates on developing 
suitable models of elevation error instead. Fractional Brownian 
motion has been proposed as a suitable stochastic model of elevation 
(Mandelbrot, 1975, 1977, 1982; Goodchild, 1982; Goodchild et al., 
1985; Mark and Aronson, 1984), in part because simulations using this
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stochastic process bear striking resemblance to some types of real 
terrain.

For the purposes of this discussion we can divide choropleth data 
into two types. The first, which we will refer to as socioeconomic, 
arises in fields such as the Census when a continuous variable is 
summarized using defined reporting units. The "cookie cutters" or 
unit boundaries are located in most cases independently of the vari 
able being reported; in fact they may be used to report several 
hundred different and possibly unrelated variables. Error modelling 
is likely to be difficult since the process leading to error in each 
boundary depends on the nature of the boundary; lines which follow 
streets are likely to have very different errors from lines which are 
defined to follow rivers, for example. For this type of data it 
seems appropriate to separate error in attributes from error in 
feature location, as several authors have done (MacDougall, 1975; 
Chrisman, 1982), and to attempt to model each separately.

The boundaries of a choropleth map form an irregular tesselation of 
the plane. The literature contains a number of methods for genera 
ting random tesselations which might form useful models of error in 
choropleth boundaries (Boots, 1973; Getis and Boots, 1978; Miles, 
1964, 1970). All of them satisfy the necessary topological and 
geometrical constraints on boundaries. However none are sufficiently 
irregular in appearance to be acceptable as simulations of real 
choropleth boundaries.

If a suitable method for generating boundaries could be found, the 
second stage of the simulation process would be to distribute 
attributes over the polygons in some reasonable fashion. A random 
allocation is unacceptable on two grounds; it fails to reproduce the 
spatial autocorrelation of attributes observed on almost all maps, 
and allows adjacent zones to receive the same attribute. Goodchild 
(1980) and Haining, Griffith and Bennett (1982) have discussed the 
simulation of autocorrelation.

The focus of this paper is on the other type of choropleth data, 
which we refer to as natural resource data. In this case boundaries 
are intimately related to the variable being mapped, and are in most 
cases unique to it. For example the boundaries on a soil map occur 
along lines of change in soil type, and are unlikely to coincide with 
boundaries on any other coverage. Boundaries are inherently uncer 
tain, and the level of uncertainty is related to the change in soil 
class which occurs at the boundary; it is easy to believe that a 
transition from class A to class B might be more readily determined 
on the ground than a transition from A to C, for example. Under such 
circumstances it seems clear that an error model which separates 
attributes from locations must be inadequate.

The next section of the paper describes the proposed model. We then 
discuss the implications of the model for the analysis and descrip 
tion of natural resource data, and its potential applications.

THE MODEL

Consider a number m of continuous variables zi,Z2,...,zm distributed 
over the (x,y) plane. The variables will probably show spatial auto 
correlation, and may or may not be correlated. Now consider an 
m-dimensional space defined by these variables; we will refer to this
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ts phase space by analogy to phase diagrams in thermodynamics. The 
space is divided into a number of domains, each of which is associ 
ated with one of a set of n classes:

C(z 1 ,z 2 ,...,z m ) ( S (1)

where C is the class assigned to a point in phase space and S is the 
set of all possible classes. The domains provide a mapping from a 
set of m continuous variables to one of a set of classes. There may 
be more than one domain associated with a particular class, and some 
classes may not appear in the phase space. Finally, since the input 
variables are by definition continuous, it follows that if two zones 
share a common boundary on the choropleth map, then their correspond 
ing classes must have been obtained from adjacent domains in phase 
space.

A simple model of world life zones by Holdridge et al. (1971) pro 
vides an illustration. Suppose that vegetation is largely controlled 
by temperature and precipitation variables, which have been mapped 
over the surface. Holdridge's diagram relating temperature and 
precipitation to vegetation class, reproduced in Figure 1, is a 
simple example of domains in phase space.

Dry ]/ Moist V Wet V Rain 
Tundra A Tundra A Tundra / Tundra /'

Desert ]/ y Moist I/ Wet y Rain 
Scrub ./[ stePPe A Forest /I Forest /{ Forest /

Steppe / Forest /] Forest A Forest ,1 Forest /

Desert I7 Desert I / Thorn I / Very Dry I / Dry / Moist I / Wet I / Ram 
Scrub /'Woodland/ Forest / Forest \ Forest /] Forest /[ Forest

PRECIPITATION (mm)

Figure 1. Example phase space for world life zone classification, 
from Holdridge et al. (1971).

If applied to the two input variables, it would map every combination 
of temperature and precipitation to a vegetation class, and thus 
convert two isopleth maps into one choropleth map. Errors in the 
choropleth map could then be ascribed to two sources: errors in the 
values of the continuous variables, and uncertainty in the delimita 
tion of domains.

The visual appearance of the simulated choropleth map will clearly 
depend on the input surfaces. Highly irregular surfaces will produce 
highly fragmented choropleth zones, while smooth surfaces will 
produce large zones with relatively smooth boundaries, suggesting a
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direct relationship between the degree of spatial autocorrelation of 
the input surfaces and the nature of the resulting map. For this 
reason we propose to use fractional Brownian surfaces as input vari 
ables, because they allow control over the level of spatial auto 
correlation: a single parameter H can be varied to generate a 
continuum from very smooth (H=l) to very rugged (H=0) surfaces. A 
value of 0.7 has often been identified as giving the closest visual 
appearance to real terrain (Mandelbrot, 1977, 1982).

To illustrate the model, two surfaces were generated, at H=0.7 and 
H=0.6, and sampled with a 64 by 64 array. Each cell's values of z\ 
and Z£ were mapped into the five-class phase space shown in Figure 2: 
the 4096 points are shown as dots. The resulting classified raster 
was vectorized to give the polygons shown in Figure 3.

It is likely that the boundaries produced by this simulation process 
are too irregular to be acceptable: they also show many isolated 
islands, which are rare on real maps. We suggest that these differ 
ences are the result of cartographic smoothings which take place 
during the drawing of choropleth boundaries. To allow for this, and 
also to remove the visual effects of pixel boundaries, we have added

Figure 2. Phase space used in example simulation, with points 
two 64 by 64 rasters.

from
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Figure 3. Classified 64 by 64 raster simulation.

two stages to the simulation process. First, the vectorization 
algorithm has been biassed against small islands. The normal criter 
ion for contiguity is rook's case: a cell is not part of a larger 
choropleth zone unless at least one of its four rook's case neigh 
bours is also part of the zone. However we allow an additional case: 
a pixel can be part of a larger zone if at least one of its bishop's 
case (diagonal) neighbours is also part of the zone, provided all of 
its four rook's case neighbours are part of some other, second zone. 
Second, we smooth the vectorized boundary between topological 
vertices by using a simple spline. This has the effect both of 
removing the pixel outlines, and also of reducing the irregularity of 
the line to emulate the cartographer's implicit generalization.

IMPLICATIONS OF THE MODEL

A contour map can be seen as a choropleth map in which the zones 
between every pair of adjacent contours are given a unique colour or 
class. In terms of our model, this choropleth map would be generated 
from a single variable, m=l, using a phase space of one dimension in
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which the domains appear as divisions along the axis of that vari 
able. Classes can be adjacent on the choropleth map, and have non 
zero common boundary length, only if their corresponding domains are 
adjacent in phase space. It follows that there is a unique ordering 
of the classes such that when adjacencies are counted in a table in 
which the classes have been placed in the correct order in both rows 
and columns, the only non-empty cells will be those immediately 
adjacent to the diagonal.

The same property holds for two input variables if the domains are 
bounded by parallel lines, and similarly for more than two vari 
ables. If domain boundaries are parallel, it follows that some 
linear combination of the two input variables can be found, perpen 
dicular to the domain boundaries, which would produce the same choro 
pleth zones.

In terms of the model, the relative frequencies of adjacencies on a 
choropleth map are therefore an indication of the complexity of the 
phase space and the number of input variables, independently of the 
error or distortion of the data. For example, error can never 
produce an adjacency between two classes which are not adjacent in 
the underlying phase space. It can, however, produce an adjacency 
which was not previously present on the choropleth map but which is 
nevertheless present in phase space.

While the model replicates the observed crude characteristics of much 
natural resource choropleth data, we do not wish to imply that all 
such data is generated by processes of this type. The model seems 
reasonable as a mechanism for determining vegetation zones in 
relation to continuous, climatological variables, but no comparable 
continuous variables control bedrock geology or soil class. Some 
characteristics of choropleth data are clearly not replicated, such 
as the long, contorted polygons which follow rivers on maps of flood- 
plains and related phenomena.

APPLICATIONS

The model provides a method for simulating choropleth boundary net 
works and associated attributes under a variety of conditions from 
small, fragmented zones to large ones and from highly irregular 
boundaries to smooth ones. We plan to use it to investigate a number 
of questions related to error and accuracy in choropleth maps, the 
answers to which are significant in the design and operation of 
geographic information systems.

First, the model will allow us to investigate the relationships 
between the accuracy of a spatial data base and the accuracy of 
measures derived from it, under a full range of conditions. For 
example, there is need for empirical work to examine further the 
effects of pixel size in raster data bases, and of digitizing errors 
and line generalization in vector data bases. The use of simulated 
rather than real data allows greater control over the characteristics 
of the data, and a wider range of experimental conditions.

Second, the model may provide a better understanding of the sources 
of error in choropleth maps. Error can occur at several stages in 
the simulation; in the measurement of the continuous variables, in 
the spatial sampling design (the density and position of the raster),
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in the delimitation of domains in phase space, and in the vectoriza- 
tion and smoothing of polygon boundaries. Each of the various 
sources of uncertainty in a soil map boundary can be related to one 
or more of these sources. For example, uncertainty may be due to a 
low density of sampling of soils near the boundary, to inaccurate 
measurement of parameters such as soil colour, to subjective smooth 
ing of the boundary by a cartographer, or to imprecision in the 
definition of soil classes. It is possible to simulate each of these 
separately, and to observe their effects. For example, error due to 
smoothing will produce uniform uncertainty for all lines, whereas 
error due to inaccurate measurement of one underlying continuous 
variable will produce degrees of error in boundary lines which are a 
function of the classes separated by the line, and depend directly on 
the slope of the relevant domain boundary in phase space.

Third, we can observe the effects of each source of error on GIS 
operations such as polygon overlay and sliver removal. Algorithms 
designed to remove slivers can be tested under a variety of condi 
tions and forms of error.

One of the more desirable objectives of a study of error in spatial 
data bases would be the development of hypothesis tests to resolve 
such questions as whether a particular sliver polygon is real or 
spurious, based on its area or shape, or whether a point lies inside 
or outside a polygon. To do so would require a simple error model 
characterized by a very small number of parameters. The model 
proposed here is clearly not suitable; its parameters include the 
number and level of spatial autocorrelation of the underlying 
continuous variables, the spatial sampling design, the geometry of 
the phase space and the nature of the splining process. Although 
various simplifying assumptions might be made (for example that all 
boundaries in phase space are straight), there seems little prospect 
of calibrating a model of this complexity.

Greenland and Socher (1985) have proposed a simple measure of the 
degree of agreement between two versions of the same choropleth map. 
The proportion of area which has been assigned the same class on both 
maps, p0 , is compared to an expected proportion pe in an index 
denoted by kappa. The basis for the calculation of pe is the 
assumption that class is randomly allocated, in other words that the 
proportion of area allocated to class A on one map and to class B on 
the other is simply the product of the proportion which is A on the 
first map and the proportion which is B on the second.

If the maps show highly fragmented polygons, it is relatively easy 
for errors in boundary positions to produce agreements no higher than 
the expected proportion, and thus low values of kappa. But if the 
polygons are large, the same degree of boundary distortion will 
reduce kappa only slightly, and it will be almost impossible to find 
distortions which yield low kappa values. In other words, kappa is 
highly sensitive to the degree of spatial autocorrelation in 
attributes, and cannot be compared usefully across different types of 
data. To do so requires a more appropriate model of error. However 
given the variety of possible sources and forms of error in the model 
proposed in this paper, it is unlikely that a simple measure of data 
base distortion could be devised which would be valid across a range 
of data types.
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