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ABSTRACT

Vector-based geographic information systems usually require annotation, such as 
a polygon number or attribute data, in a suitable location within a polygon. 
Traditional methods usually compute the polygon centroid, test the centroid for 
inclusion or exclusion, and select some alternative point when the centroid 
falls outside the polygon. Two problems are associated with this approach: 
(1) the text can be centered on the point, but may be placed in a visually 
awkward place, and (2) part of the text may fall outside the polygon and may 
overlap other polygon boundaries or other text labels. An algorithm is 
presented that circumvents both of these problems, by computing a number of 
horizontal candidate labelling rectangles (boxes) within a polygon from which a 
suitable selection can be made or from which one may conclude that the text 
label does not fit the polygon.

INTRODUCTION

The placement of feature annotation on maps is an important and difficult 
problem in automated cartography; it has been the subject of extensive research 
in recent years. In particular, the placement of labels in the vicinity of 
point features has been a subject of investigation as reported by Cromley 
(1986), Langran and Poiker (1986), and Mower (1986). However, two other types 
of problems also exist, namely, labelling of lines and polygons for which the 
applied methodology is still rather primitive in many systems. This paper will 
address the polygon labelling problem.

In a number of systems the polygon centroid (or a derivative) is used to locate 
a label within a polygon. As the centroid may fall outside the polygon, a 
fairly typical approach is to check this fact with a point-in-polygon method and 
then to shift the label to an arbitrary point inside the polygon. This method 
often leads to labels that appear in awkward locations and may partially overlap 
with the polygon boundary. The computed centroid is only a single point, 
whereas a label can best be represented by a minimum box bounding the text of 
the label. This minimum box must then be located such that (1) the box is 
wholly contained with the polygon, and (2) the box appears at a pleasing 
location. One may even want to repeat the text label at several locations when 
the polygon is large or complex.

The objective for this paper is to present a method for computing a number of 
candidate labelling boxes from which one or more suitable boxes may be selected. 
If no box can be found that is large enough to contain the label, one may then 
conclude that the label will not fit and some other placement action must be
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taken.

In a subsequent process one may select a number of labelling boxes from among 
the candidate boxes, taking into consideration the characteristics of the 
polygon and the label. This process will only be briefly discussed.

APPROACH

The basic idea is to first divide the polygon into horizontal strips, where 
each strip boundary line passes through a vertex, and then to place vertical 
line segments on the polygon boundary segments located within the strips from 
which the boxes can be created by "sweeping" over these vertical segments in a 
left-to-right direction.

The polygon is first divided into strips by "drawing" a horizontal line through 
each of its vertices, as shown in figure 1. For a polygon with N vertices,
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Figure 1.--A simple polygon wjth strips and vertical line segments.

this divides the plane into N+l strips, but the strips above and below the 
vertex points with maximum and minimum y coordinates are not of interest, so 
that N-l strips fully contain the polygon.

The polygon line segments are subdivided by the strips such that each strip has 
an even number of divided segments located within the strips. The subdivided 
line segments will be referred to as strip segments. There are two strip 
segments in a strip for simple (no islands) convex polygons, and a multiple of 
two for non-convex polygons or polygons with islands (complex polygons).

Within a strip, a vertical line called a vertical segment can be placed 
through each strip segment to guide the formation of the candidate boxes (see 
figure 1). A vertical segment can be placed anywhere between the vertex points 
of a strip segment, but the strip segment midpoint has been selected. Other 
choices are the innermost or outermost vertex of a strip segment. The objective 
is to compute a set of maximal boxes, such that each box cannot be expanded 
further in the horizontal and vertical directions without crossing the polygon 
boundary. The present method only approaches this condition because each 
vertical segment becomes a part of a box, which, because of the midpoint 
location of the segment, will be partially outside the polygon boundary. An 
alternative is to locate the vertical segments at the innermost vertex of the 
strip segment; this guarantees that each box will be wholly inside the polygon, 
but some boxes will have zero area, so the space within the polygon will not be 
used as efficiently. Experience has shown that with the density at which 
natural resource applications polygons are usually digitized, the midpoint 
choice produces boxes that may have little "corners" outside the polygon. But 
in most cases, because the text box is usually smaller than the candidate 
labelling box, this is never graphically revealed.
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The left and right boundaries of a box are formed by lines coincident with a 
left and right vertical segment, hereafter referred to as the left defining 
segment (LDS) and right defining segment (RDS). The bottom and top 
boundaries of the box are coincident with the respective lower and upper strip 
boundaries of the lowest and highest strip still contained within the box.

For instance, the box shown in figure 2 is constructed with left and right

Figure 2.—Simple polygon with sample box.

boundaries through vertical segments 5 and 10, and with the bottom and top 
boundaries coinciding with the lower and upper boundaries of strips 6 and 2. In 
general, a box is denoted as: box(left, right, hot, top), where left and 
right are the vertical segment numbers of the LDS and RDS and hot and 
top are the bottom and top strip numbers.

After the polygon has been divided into strips and the vertical segments have 
been generated, the vertical segments are sorted from left to right by 
increasing x coordinate. A vertical segment number is then assigned which is 
the sequence number in this sorted order.

Each vertical segment has an associated strip number s(i), where i is the 
vertical segment number in sorted order, and / = 1, . . . ,n. The 
x coordinate of a vertical segment is denoted by x(i). The vertical 
segments in a strip can be ordered from left to right as consecutive left and 
right pairs. In the left-to-right scan, only one pair is active in a strip at a 
time; a pair becomes inactive as soon as the right segment has been processed. 
Denote the left segment of this active pair by l(s) and the right segment by 
r(s). Then the following conditions hold for a maximal box: 
boxmax(left, right, hot, top):

Pie ft: x(left) is max(x(l(s))), s=bot,...,top 

Fright: x(nght) is min(x(r(s))), s=bot,...,top

From these two conditions, two resultant conditions for the top and bottom of 
the box can be derived, knowing that Pleft and Fright must be violated in 
the strips directly above and below the box, otherwise the box could be extended 
in these directions:

Flop: x(l(top-I)) > x(l(top)) or x(r(top-l)) < x(r(top)) 

Pbot: x(l(bot+l)) > x(l(bot)) or x(r(bot+l)) < x(r(bot))

Another important condition is that the LDS and RDS of the box must coincide 
with the box boundary and therefore the following condition holds:

Pine : bot<_ s(left)_< top and hot <_s( right) _<_ top
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The approach taken for constructing a set of maximal boxes from the polygon is 
based on the above five conditions.

Each left vertical segment is potentially the LDS of one or more boxes. 
Condition Pleft states that the LDS has the largest x coordinate of all 
active left vertical segments in the strip range of the box; therefore only 
segments to the left of the LDS can influence the vertical range of the box, 
left vertical segments to the right have no bearing on it whatsoever. This 
suggests sorting the vertical segments by x coordinate and processing them in 
sorted order. Each segment can then be entered into a working array in which 
the boxes are created, and can be processed against other segments already 
entered to determine the range of the box for which it is the LDS.

The working array may consist of a number of rows and columns, each row 
corresponding to a strip in the polygon, and the columns representing left, 
right, bottom, and top elements for boxes that are being generated. The working 
array row corresponding to a strip will be referred to as the strip entry. 
Defining segments are entered into the working array at the strip entry of the 
strip in which they occur. Finished boxes in the working array may be inspected 
for selection immediately after they are generated or they may be saved in an 
output array for later processing.

Conditions Ptop and Pbot suggest how to determine the bottom and top limits 
of a box. The idea is to probe upwards and downwards until strips are 
encountered that violate Pleft and Fright. In the downward direction 
Pleft becomes invalid when x(l(bot+l)) > x(l(bot)). But since the violating 
segment has an x coordinate greater than that of the LDS it cannot as yet 
have been entered into the working array. And since the strips for a box are 
adjacent, it suffices to scan downward in the working array until an unused 
strip entry is encountered. The number of the strip before the empty entry then 
is recorded in the bottom column for the working array strip entry of the LDS. 
The same procedure is followed for the top. A set of adjacent active working 
array entries between two unused entries at the top and bottom will be referred 
to as a cluster.

When processing vertical segments by sorted x coordinate, Fright implies 
that each encountered right segment automatically becomes the RDS for one or 
more boxes. The problem is to determine the boxes that are terminated by the 
segment. Conditions Ptop and Pbot hold for all working array entries in the 
cluster because of the left segment conditions x(l(top-l)) > x(l(top)) and 
x(l(bot+l)) > x(l(bot)). However, the 'RDS must also be on the box boundary. 
Therefore, subject to Pine, all unfinished boxes in the cluster can be 
terminated by the RDS and be turned into completed boxes. Not all entries in 
the cluster may qualify.

The next problem is to consider which cluster entries that have produced boxes 
with the current RDS can live on in the left-to-right scan to produce more 
boxes, and how their top and bottom limits should be adjusted. Certainly the 
strip entry for the RDS must be terminated because the minimum right segment 
has been encountered. However, the other entries (satisfying Pine) can 
continue if the top and bottom limits are adjusted. The strip entry for the 
RDS can therefore be reverted to the unused condition so that the cluster is 
either reduced by one strip (if the RDS strip is at the bottom or the top of 
the cluster) or the cluster is split into two parts. Considering the right 
segment conditions x(r(top-l)) < x(r(top)) and x(r(bot+l)) < x(r(bot)) of 
Ptop and Pbot, these can now be interpreted to mean that the strip of the 
RDS becomes bot+1 as well as top-1 for the other boxes in the new clusters 
(assuming without loss of generality that the RDS splits the cluster into two 
new clusters.) This means that the top and bottom columns for the entries in 
the working array for the new clusters must be adjusted to reflect these new
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limits.

The overall problem of generating candidate labelling boxes can be efficiently 
separated into two problems: (1) to compute the vertical segments, given the 
polygon definition, and (2) to compute the boxes from the vertical segments.

In the next section, the approach for computing the vertical segments will be 
discussed, but, because of space limitations, an algorithm will not be 
presented. Instead the emphasis of this paper will be on the precise algorithm 
for computing the boxes, which follows thereafter.

COMPUTING THE VERTICAL SEGMENTS

The approach used for computing the vertical segments has been to use a 
line-sweep approach (see, for instance, Sedgewick, 1983, chapter 24). The 
vertices are sorted on the y coordinate to divide the space into strips. Each 
y coordinate is then processed in turn, and its associated line segment number 
is either entered or deleted from an "active list" of line segments. With each 
y, a new strip is defined, of which the lower limit is set to the upper limit 
of the previous strip, and for which the new y becomes the upper limit. Line 
segments in the active band are then clipped against these limits and the x 
coordinates of the midpoints of the clipped segments are computed and entered 
into a list, together with the strip number in which they occur.

If the y coordinate following the current y coordinate is greater than the 
previous y coordinate in the polygon boundary, the line is removed from the 
active list. If this is not the case, the line segment is recorded in the list.

When the line sweep is completed, the list of strip numbers of the strip segment 
midpoints representing the vertical segments, is sorted by the x coordinate. 
This sorted list is then input to the algorithm discussed in the next section.

COMPUTING THE LABELLING BOXES

The algorithm for computing the boxes will be explained through a stepwise 
refinement process. The objective is to arrive at a fully developed procedure 
presented in Pascal. In the initial step there is only the procedure heading 
and ending, together with a characterization of as yet undefined code in the 
middle. The characterization will be presented as a Pascal comment in {} 
brackets. At each step this characterization will be further refined, but the 
entire set of derived code will not be repeated at each step; only the local 
expansion will be presented. The entire algorithm is then given at the end of 
the section.

The procedure is entered with a list of strip numbers for the vertical segments, 
which are in sorted order. This is the only input required for this algorithm, 
given that the output boxes are defined in terms of the LDS and RDS, and 
upper and lower strip numbers. Thus, the following code is first proposed:

Step 1

procedure boxes(strip: intarray; n:integer; 
var w: workarray; var box: boxarray); 

var i, s, b, t, m, nr: integer; 
begin
(produce the boxes} 
end;

boxarray is a type of an array of records, each record with four fields: 
left, right, hot, and top. The working array is w, while box is the
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array that will contain the boxes on output. The working array is initially 
filled with zeros, and has a valid wfOJ record. These records will be 
referred to as entries as before, where each entry has a left, right, hot, 
and top element (the record fields).

Although, for reasons of clarity, the procedure has an output array containing 
the finished boxes, one might instead inspect them on the fly. With this 
approach other information, such as the y coordinates of the upper and lower 
strip limits, and the x coordinates of the LDS and RDS must be imported to 
the procedure.

The process of producing the boxes is driven by the sorted vertical segments. 
For each segment the strip number of that segment, s, is an important 
variable. The working array entry corresponding to s will be referred to as 
the current entry. The following refinement is therefore made:

Step 2 (produce the boxes}

for i:= 1 to n do 
begin
s:= strip[i];
{process a vertical segment}
end;

To process a vertical segment, two necessary actions must be taken. First, 
within the working array, the limits of the affected cluster must be 
established. Second, it must be decided whether the vertical segment is an 
LDS or an RDS, and appropriate action must be taken in each case. This 
leads to step 3:

Step 3 {process a vertical segment}

{establish cluster limits} 
if w[s].left = 0 then

begin
{process LDS}
end 

else
begin
{process RDS}
end; 

end;

The LDS or RDS decision is made by checking the current entry. Since the 
LDS must come before the RDS, it suffices to check whether the left element 
of the current entry is empty (zero).

To understand how the cluster limits can best be determined, it is first 
necessary to know how the LDS is processed, which is shown in the following 
step:

Step 4 {process LDS}

w[s].left:= i; w[s].right:= 0; w[s].bot:= b; w[s].top:= t;

This step entails that the left element is set to the vertical strip number /, 
that the right side of the potential box is as yet unknown (0), and that the 
bottom and top are set equal to the cluster limits, b and /. It is 
necessary to assign 0 to the right element, even though w is initialized 
to 0, because entries may be recycled in concave and complex polygons.
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To find the cluster limits, the simplest idea is to scan the working array from 
the current entry in the upward and downward direction until empty entries are 
encountered. There is a better method, however, that makes use of information 
already entered in the cluster for previous segments. A cluster grows with new 
working array entries, which either begin a new cluster or are added to the top 
or bottom of an existing one . Consider the latter situation for the moment.

Four cases arise: new bottom and top for the current entry must be found, and 
for each it must be considered whether the current entry is at the top or the 
bottom of the existing cluster. If the new entry is at the the bottom, at 
position 5, then the new bottom is known: wfsj.bot = wfs-lj.bot+l (strip 
numbers increase towards the bottom of the polygon). To find out whether the 
entry is at the bottom, one needs only to decrement the entry number, and see 
whether this entry is empty. If not, the current entry is at the top of the 
cluster.

If the current entry is at the bottom, wfs-lj.top should contain the top of 
the cluster as established for some earlier state, not necessarily the previous 
state, depending on whether entries were made at the top or bottom of the 
cluster. In this case visiting wfwfs-1 J.topJ.top should yield a better 
estimate of the current top. However, this entry could point to itself, because 
the first entry for a cluster is necessarily confined to the strip for which it 
applies. Therefore, to make progress the next entry up (w[\v[s-l].top-lJ.top) 
needs to be inspected. This progression is further pursued until the current 
top is reached.

This process can be illustrated with the following snapshot of the working array 
for one of the states related to figure 1

j 1 r b t

1 | 0 0 0 0 where: j = working array
2 | 5 0 6 2 <-- top entry
3|2033 1 = left
4 | 3 0 4 3 cluster r = right
5 I 4 0 6 3 b = bottom
6 I 1 0 6 6 <-- bot t = top
7 | 0 0 0 0 <-- current entry 
8|0000

where vertical segment 6 must be entered, which lies in strip 7. As 
w[7J.Ieft = 0, it must be a left segment, and also since wfSJ.left = 0 the 
entry occurs at the bottom of the cluster. Therefore w[7].bot:= w[6].bot+l, 
and the as yet incomplete working array entry 7 is set to: 607 0. To 
determine the top entry note that w[6].top = 6, and therefore points to 
itself. However, w[w[6].top-lJ.top = 3, and thus progress is made. But again 
w[3].top = 3, pointing to itself, so that w[w[3].top-lJ.top - 2 needs to be 
inspected. This entry again points to itself, but decrementing by 1 points 
into an empty entry, so that the top of the cluster has been found. The 
complete entry for strip 7 becomes 6072.

This leads to the following code for finding the top and bottom limits of the 
cluster for the current entry:
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Step 5 {establish cluster limits}

b:=s+l;
while (w[b].left>0) do b:=w[b].bot+l;
b:=b-l; t:=s-l;
while (w[t].left>0) do t:=w[t].top-l;
t:=t+l;

It can easily be verified that the loops of step 5 will yield b=s and t=s 
when a new cluster is established in an empty part of the working array.

The remainder of the algorithm is dedicated to processing the RDS. On 
encountering a right segment, the following actions need to be performed:

Step 6 {process RDS}

for m:=t to b do 
begin 
if (w[m].bot<=s) and (s<=w[m].top) then

begin
{insert right limit}
{output finished box}
{update working array entry}
end; 

end;

Each action must be performed for each of the working array entries within the 
cluster. Therefore, all actions are nested within a loop going from the top to 
the bottom of the cluster as established in the previous step. The test 
directly following the loop header enforces the right segment condition of 
Pine. A design consideration at this point is whether the test may be better 
combined with the do loop in a "while do" loop. This option was not chosen 
considering the fact that the bottom entries in the cluster monotically increase 
(monotonic meaning a positive or zero step increment) away from the beginning 
original starting entry of the cluster in both the bottom and the top direction, 
while similarly the top entries decrease. Therefore, there may be more than one 
window where Pine holds. Coping with these window limits would seem much more 
complex than performing a single test within the loop.

Inserting the right limit for the boxes to be generated from the cluster is 
simply a matter of inserting the RDS number in the right slot of the working 
array:

Step 7 {insert right limit} 

w[m].right:=i;

With this insertion, the box is complete and can be output in a form depending 
on further processing to be performed on the box. It may be inspected for size 
or some related criterion immediately, or it may be stored in an output array 
for later processing. For the purpose of this paper it will simply be stored in 
an output array:

Step 8 {output finished box} 

nb:=nb+l; box[nb]:=w[m];

The final step for each working entry in the cluster is to update the status of 
each entry. For the current entry, corresponding to the strip number of the 
RDS, the box has been completed, and hence the entry can be recycled for the
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next box. The entry (m = s) is therefore marked empty by setting 
w[m].left:=0.

For working array entries above and below the current entry, conditions Ptop 
and Pbot must now be enforced, because the strip of the RDS now becomes the 
strip at top-1 and bot+1 for the right segment conditions of Ptop and 
Pbot. Since top and hot in both conditions equal the current strip 
number, for strips above 5 (s>m) s = bot+1, therefore hot = s-1, so that 
wfmj.bot must be set to s-1. Similarly, for strips below wfmj.top must be 
updated to s+1. In step 9, therefore different actions are taken, depending 
on whether the entry indicated by the loop index is above, below, or at the 
current entry:

Step 9 {update working array entry)

if s>m then
begin w[m].top:=s+l; w[m].right:=0; end; 

if s=m then w[m].left:=0; 
if s<m then

begin w[m].bot:=s-l; w[m].right:=0; end;

This completes the stepwise development. Some overall improvements for 
efficiency can be made. Note that the RDS can be entered directly into the 
output array so that the working array actually does not need a right element. 
This results in the following algorithm, where workarray only has left, 
hot, and top, but outarray has all four elements:

Boxes Algorithm

procedure boxes(strip: intarray; n:integer; 
var w: workarray; var box: outarray); 

var i, s, b, t, m, nb: integer; 
begin
for i:=l to n do 

begin
s:=strip[i]; b:=s+l;
while(w[b].left>0) do b:=w[b].bot+l; 
b:=b-l; t:=s-l;
while(w[t].left>0) do t:=w[t].top-l; 
t:=t+l; 
if w[s].left=0 then

begin w[s].left:=i; w[s].bot:=b; w[s].top:=t;end 
else 

begin
for m:=t to b do 

begin
if (w[m].bot<=s) and (s<=w[m].top) then 

begin nb:=nb+l; box[nb].left:=w[m].left; 
box[nb].right:=i; box[nb].bot:=w[m].bot; 
box[nb].top:=w[m].top; 
if s>m then w[m].top:=s+l; 
if s=m then w[m].left:=0; 
if s<m then w[m].bot:=s-l; 

end; 
end; 

end; 
end; 

end;
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NUMBER OF BOXES GENERATED

For practical usage of the algorithm, it is important to have some notion of the 
number of boxes that are generated as a function of the number of polygon 
vertices. Each box must be inspected as to its suitability to contain a label, 
and therefore the total number of boxes must be reasonable.

Each box is generated from within the cluster loop, which is nested within the 
vertical line segment loop. The number of boxes generated thus depends on the 
number of vertical segments, as well as the extent of the cluster for each line 
segment. Both of these factors depend on the geometry of the polygon. For a 
convex polygon in which there are no duplicate y coordinates (each y 
generates a unique strip boundary), the number of strips is TV-7 and the number 
of vertical segments is 2N-2. The left segments build up a cluster with N-l 
entries. The right segments generate boxes. With each RDS only as many boxes 
as the size of the cluster can be generated, but the number is restricted 
because of the Pine test right after the beginning of the cluster loop, where 
the influence of this test is determined by the geometry of the polygon. With 
each RDS, the size of the cluster is decreased by one so that for the first 
right segment at most N-l boxes can be generated, for the second TV-2, etc., 
establishing an upper limit for convex polygons without islands of 
(N-l)(N-2)/2, from which it may be concluded that for convex polygons the 
number of boxes is O(N ).

For concave and complex polygons, the strips may contain a total of O(N ) 
vertical segments (Preparata and Shamos, 1985). This upper limit is approached 
in polygons with O(N) spikes, each of which would behave similarly to a convex 
polygon from which one may conclude that a total of O(N ) boxes may be 
generated.

However, the average-case behavior of the algorithm is of more practical 
interest than the above worst-case complexity. But average-case complexity is a 
function of the spatial distribution of the vertices and is therefore nearly 
intractable.

Instead, an analysis was performed on 341 reasonably complex soils polygons with 
a minimum number of 4, an average number of 77, and a maximum number of 513 
vertices. A maximum number of 84,536 boxes for a single polygon was generated 
for a polygon with 429 vertices, yielding a ratio of number of boxes/N 
of 0.46. A maximum ratio of 0.74 was obtained for a polygon with 42 vertices 
and a minimum ratio of 0.06 for a polygon with 44 vertices. The average ratio 
was 0.19.

A least-squares fit for the data in the test data set was obtained for the model 
y = a(x ) where y is the number of boxes and x the number of vertices, 
with a resultant correlation coefficient of 0.98 and estimates for a and b of 
0.18 and 1.99, respectively. Scatter plots of the residuals did not reveal any 
remaining trends.

Figure 3 shows a portion of the test data, with labels placed with the 
algorithm, where the lines in the label respectively represent the polygon 
number, the number of vertices, the number of strips, the number of vertical 
line segments, and the number of boxes. Labels that did not fit were replaced 
with the polygon number, placed within a small rectangle.
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Figure 3.-Portion of test data set with label lines representing polygon 
number, number of vertices, number of strips, number of vertical line segments 
and number of boxes generated.

One problem with the algorithm is the potentially large number of boxes that may 
be generated. Several solutions can be suggested. Unusually large polygons may 
be weeded" to reduce the number of vertices. An alternative is to halt the box 
generation process when a sufficient number of boxes has been inspected A 
third solution is to divide the polygon recursively into smaller polygons, which 
can be processsed using existing array sizes.

PERFORMANCE

The performance of the algorithm is closely related to the number of boxes 
generated. Time for the main loop is proportional to the number of vertical 
segments. For each left segment the cluster limits must be found. Because 
previous top and bottom information is used, not all cluster entries have to be 
inspected. Therefore, processing for a left segment is certainly O(N2 ) 
for convex and O(N^) for other types of polygons, because of the arguments 
used for the upper limits of the number of boxes. For each right segment the 
cluster limits are established, and then the cluster is scanned from top to 
bottom. An alternative arrangement would be to replace the top-to-bottom 
cluster loop with two loops scanning out from the current entry, while testing 
for the cluster limits. This would dispense with finding the cluster limits 
beforehand with the while do loops. This approach was tried for the test data 
set, and timings were performed, but no difference in performance could be 
detecteo!. In both cases however, performance for the right segment would also 
be O(N ) and O(N^) for the two types of polygons, so that these 
limits also represent the worst-case complexity for the entire polygon.

Storage for the algorithm is the working array which must have as many entries 
as the number of strips (+1) so that basic storage is O(N). Although the 
algorithm as presented stores the completed boxes in an output array, storing

699



the completed boxes may not be practical, given the large number of boxes that 
may be generated. Therefore, since output storage is not a requirement because 
boxes may be inspected immediately, storage for the algorithm is O(N).

SELECTING LABELLING BOXES

The algorithm may produce a large number of candidate labelling boxes from which 
only one or a few need to be selected to actually place the label. If only one 
box is to be considered, one might select the box with the maximum area. Each 
box, as it is generated, can then be inspected for area, and if the current box 
is larger than the previous largest box, it becomes the largest box, and so on. 
However, a much better visual result is obtained when the height-width ratio of 
the box somehow matches the height-width ratio of the minimum bounding rectangle 
of the block of text to be placed. Therefore, to select a better box, one may 
search for the maximum of a function of both total area and the aspect ratios of 
the label and the box. The following function has provided good results, and 
was used for figure 3:

- \(rl-rb)\ 0.4 
f(a, rl, rb) = a e

where a is the area of the box, rl is the height/width ratio of the label, 
and rb is the corresponding ratio for the box under consideration. This 
function modulates area according to the differences of the aspect ratios.

More complex strategies are in order for placing multiple labels. The number of 
labels might be determined based on the total area of the polygon, the 
area-perimeter ratio of the polygon as an index of the sinuosity of the polygon, 
the size and aspect of the label, etc. An additional problem with multiple 
labels is that the distance between labels probably should be optimized as 
balanced against the size of the selected boxes leading to the consideration of 
mathematical programming techniques.
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