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ABSTRACT

An important construct for analyzing the shape and structure 
of a polygon in Euclidean space is its bisector skeleton. A 
bisector skeleton partitions the area of a polygon into sub- 
polygons that are closer to one edge of the polygon or its 
internal linear extension than to any other one. While bi 
sector skeletons are unique in their form and application, 
their cartographic elements are topologically equivalent to 
those of a Thiessen diagram. Consequently, procedures for 
calculating Thiessen diagrams may be adopted for calculating 
bisector skeletons, just as Thiessen procedures can be 
applisd to the problem of Delaunay triangulation. This 
paper presents an algorithm for constructing bisector skele 
tons using a triangle data structure and the form of a pro 
cedure for identifying Thiessen diagrams within a convex 
boundary.

INTRODUCTION

An important class of cartographic problems is related to 
the partitioning of space based on proximity criteria. One 
proximity problem given a known point distribution, is to 
delineate the set of points on a surface that is closer to 
one known center than to any other points. This problem of 
constructing a Thiessen diagram has many applications in 
economic geography, quantitative techniques, and cartography. 
Another proximity problem is that of constructing the bi 
sector skeleton of a given polygon. Bisector skeletons 
partition the internal area of a polygon into subpolygons 
that are closer to one edge of the polygon or its internal 
linear extension than to any other edge and its extension 
(Brassel, Heller, and Jones, 1984). The inclusion of 
internal edge extensions in its definition distinguishes 
bisector skeletons from earlier continuous skeletons 
(Montanari, 1969) and gives them their strictly linear 
appearance (see Fig. 1) . It should be noted that while 
Thiessen polygons are convex, bisector polygons may be 
either convex or concave (again see Fig. 1) .

Algorithms for analytically delineating Thiessen polygons 
have received more attention (Rhynsburger, 1973; Shamos, 
1977; Brassel and Reif, 1979) than the newer developed 
problem of constructing bisector skeletons. Recently, an 
algorithm for identifying and storing a Thiessen diagram 
.within a convex boundary has been proposed based on a 
triangulation data structure (Crcmley and Grogan, 1985). 
The purpose here is to apply the design of this procedure
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to the problem of calculating bisector skeletons after 
showing the topological equivalence of respective carto 
graphic elements of each diagram.

Figure 1. A Bisector Skeleton

CONCEPTUAL BACKGROUND

There is a clear analogy between the components of the 
bisector skeleton problem and identifying a Thiessen dia 
gram within a convex boundary. For the Thiessen problem, 
a set of n points is given in a plane bounded by s convex 
polygon defined by a set of m edges. Each edge of the bound 
ing polygon is a line segment connecting two boundary ver 
tices; thus, the polygon is alternatively referenced by m 
vertices (Cromley and Grogan, 1985). It is assumed that the 
bounding vertices are sequentially numbered in a clockwise 
-direction so that the Thiessen diagram is always to the 
right as one moves around polygon boundary. For the bisector 
problem a polygon composed of n edges is given in a plane. 
Each edge of the polygon is a line segment connecting two 
boundary vertices; again the polygon is alternatively refer 
enced by these n vertices. It is also assumed that the 
polygon's vertices are sequentially numbered such that as 
one moves from vertex to vertex, the area of the polygon 
lies to the right of the connecting edge.

The set of n points are used in the Thiessen problem to 
generate convex polygons that are nearer to one point or
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Thiessen centroid than to any other centroid. Likewise, the 
set of n edges of a polygon are used in the bisector skele 
ton problem to delineate subpolygons within the given poly- 
eon that are closer to one edge or its interior extension 
than to any o.ther edge or its corresponding extension. 
Given an identical function within the context of the rer- 
sr>ective problem, each Thiessen centroid, C^, is equivalent 
to each polygon edge, P^.

The problem of identifying a corresponding polygon for each 
centroid is equivalent to finding a set of p points that 
are equidistant and closest to three centroids (Fig. 2); 
these points are called Thiessen vertices. Similarly, a 
skeleton vertex is a point equidistant and closest to three 
polygon edges or their interior linear extension (Fig. 3) 
(Brassel et al, 1984). Thiessen vertices and skeleton ver 
tices are also equivalent as they represent junctions along 
the perimeter of local polygons where the generating cen 
troids (polygon edges) change neighboring centroids (edges). 
Additionally, each Thiessen vertex that lies on the convex 
bounding polygon is called a boundary Thiessen vertex while 
the others are known as interior Thiessen vertices. 
Similarly, skeleton vertices will either lie in the interior 
of the polygon or on its boundary; in the latter case, the 
set of boundary skeleton vertices is identical to the orig 
inal set of n polygon vertices.

C2

Figure 2. A Thiessen Vertex and Its Nearest Centroids

Finally, a Thiessen edge, E•, is defined as the locus of 
points equidistant and closest to two centroids. A Thiessen 
edge will connect two Thiessen vertices that share two 
nearest centroids. Thiessen edges connecting two boundary 
Thiessen vertices are known as boundary Thiessen edges. 
For a bisector skeleton, a skeleton edge, S^, is the locus 
of all points equidistant and closest to two polygon edges.
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Figure 3. A Skeleton Vertex and Its Nearest Edges

Skeleton edges will connact skeleton vertices that share 
two closest polygon edges. Therefore, skeleton edges that 
connect two boundary skeleton vertices are also called 
boundary skeleton edges . In this case , the set of these 
boundary skeleton edges is the same as the set of polygon 
edges; in other terms, a polygon edge in the bisector skele 
ton problem is equivalent to two different elements in a 
Thiessen diagram with a convex boundary: a Thiessen centroid 
and a boundary Thiessen edge.

Additionally, one centroid is called a Thiessen neighbor of 
another centroid if the two centroids 1 polygons cobound the 
same Thiessen edge. It should be noted that some edges may 
connect two unique vertices that have the same cartographic 
location which gives the visual impression that one vertex 
has more than three nearest centroids and that some centroids 
share only a common vertex rather than an edge . However , 
only the centroids sharing the zero length edge are neigh 
bors of each other (Cromley and Grogan , 1985). All eentroids 
with a boundary Thiessen edge are neighbors of an imaginary 
background centroid, C +T. Analogously, one polygon adge 
is a skeleton neighbor of another if the respective subpoly- 
gons share a common skeleton edge. By definition, each 
polygon edge will be a skeleton neighbor of an imaginary 
background edge ,

It is important to enumerate ea <h Thiessen (skeleton) vertex 
and edge as an exact number of them exist as a function of 
the number of centroids (polygon edges) . Cromley and Grogan 
have shown that a Thiessen diagram with n centroids will 
have 2(n-l) vertices and 3(n-l) edges. Similarly, a polygon 
with n edges will have 2(n-l) skeleton vertices and 3(n-l) 
skeleton edges . While it is unknown how many boundary 
Thiessen vertices there will be, it is always the oase that

722



there are exactlv n boundary skeleton vertices and therefore 
n-2 interior skeleton vertices.

It is also important to enumerate each Thiessen or; skeleton 
vertex because respective vertex reference files can be con 
structed based on the topological relationships between ver 
tices and centroids (polygon edges). Because a Thiessen 
diagram is the dual of a Delaunay triangulation, a Thiessen 
data file is based on Elfick's triangle structure (Cromley 
and Grogan, 1985). Fach record of the file contains six 
entries corresponding to the neighborhood information of 
each unique vertex and two entries for its coordinates. 
The first three neighborhood values contain the references 
of the three adjoining vertices recorded in a counter 
clockwise order. The next three entries are the reference 
values of the corresponding centroid (polygon edge) whose 
generated polygon is the right-hand neighbor of the edge 
conri&cting the current vertex to an adjoining vertex. 
Thiessen or skeleton edges are not retained in this file as 
they are line segments connecting vertices and would be 
redundant informetion. Once all 2(n-l) records have been 
completed, a digital representation of a bisector skeleton 
or a Thiessen diagram is complete.

ALGORITHM DESIGN

Cromlev and Grogan have presented a two stage method for 
constructing the vertex reference file for a Thiessen dia 
gram. In the first stage, all Thiessen boundary vertices 
are enumerated by walking around the outline of the bounding 
polygon in a clockwise direction. As each boundary vertex 
is founds, its three centroid neighbors and the two adjoining 
vertex neighbors that are also boundary vertices are identi 
fied. Only the third vertex which is an interior vertex 
remains to be identified. In the second stage, the interior 
vertices are found by rnoving along the boundary of each 
individual Thiessen polygon in a clockwise manner. This 
process starts by first enumerating those Thiessen polygons 
that have a boundary Thiessen edge and then continues in an 
inward spiral until all polygons and vertices have been 
found. As the boundary of an individual polygon is dpir- 
pleted, its generating centroid is removed from the list of 
potential centroid neighbors for new vertices.

A similar procedure can be applied to the bisector skeleton 
problem. In this case, the first stage is trivial as the 
set of boundary skeleton vertices is the same as the given 
set of polygon vertices. The second stage is also less 
complicated as the spiral process terminates when the last 
subpolygon having a boundary skeleton edge is completed 
as there are no subpolygons in a bisector skeleton that are 
completely interior to the bounding polygon.

While the overall design of the bisector skeleton procedure 
is the same as a Thiessen procedure, there are many techni 
cal details that differ. First, the edge that partitions 
the subpolygons is formed by the bisactor of the angle 
between two polygon edges or their extensions rather than 
the perpendicular bisector between two centroids. Second,
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Brassel and Reifs circle test for finding centroids that 
are closer neighbors cannot be used. Instead, the third 
neighbor (a polygon edge in this case) for each interior 
vertex is found by sequentially testing each polygon edge in 
a clockwise order. A half-plane test is used to determine 
if the last vertex lies in the same half-plane as the edge 
being tested or in the half-plane of the current potential 
adfze. The current potential edge is updated whenever the 
vertex is in the half-plane of the new edge. Finally, as 
one proceeds around the boundary of each subpolygon, only 
those adges that are subsequent in the clockwise order 
of the last polygon edge neighbor need to be tested as 
DOtential neighbors for new interior vertices of the current 
subpolygon. This algorithm has been implemented in FORTRAN 
77 and used to construct Fig. 1.

SUMMARY

The algorithm presented here has shown that calculating 
bisector skeletons is analogous to that of calculating 
Thiessen diagrams. Although many cartographic entities 
have very different forms and functions, their digital 
form is often quite similar. This enables digital methods 
to be more integrated than their manual counterparts.
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