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A summary of the development of a database for a geographic 
information system. The commonly described disadvantages of 
the relational model (fixed length fields and an excess of 
tables) were overcome in a variety of ways, allowing the 
retention of the advantages of the model. The Binary Data 
Model (BDM) was used to define the system specifications. A 
software tool was developed to convert the BDM specification 
into tables in a relational model and into an object 
oriented interface to the relational database. A small, 
dedicated development team followed a strict development 
cycle, resulting in all major milestones being met. One of 
the main themes in this paper is the handling of complex 
(spatial) data that does not obviously suit the relational 
model.

Introduction

Your mission, should you be so bold, is to construct a 
database to handle highly structured, multi-purpose 
geographic information and associated textual data, with 
display capability, and hooks to independent databases, for 
huge quantities of data to be randomly updated, with some 
real-time insertion.

This paper presents a review of the authors' experiences 
while developing a relational database with support tools to 
handle both spatial and non-spatial data. [3] describes the 
concept of the system we have developed. It is hoped that 
this paper provides a useful narration of events in a 
moderately large geographic information system undertaking. 
We review the database history from the definition of the
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original goals, through design, and development, to 
optimisation. At the time of writing, the database and tools 
are still being tuned, with initial feedback from first 
customers. One of the main themes in this paper is the 
handling of complex (spatial) data that does not obviously 
suit the relational model.

How did we decide to proceed? What worked? What didn't? This 
paper follows the actual development cycle.

A number of key decisions may be identified, which, with the 
chosen hardware and software, defined our working 
environment.

The product uses a commercial relational database management 
system (dbms) on a network of Sun-3 (tm) workstations 
running UNIX (tm) 4.2. Components of the system are linked 
with a proprietary inter-process communication protocol.

UNIX, while exceedingly popular, has disadvantages. The 
caveats on the choice of UNIX are that it is not a real-time 
operating system, and that it is not optimised for the needs 
of our application (e.g. job scheduling algorithm). In 
particular, there is a prejudice against processes requiring 
large amounts of memory and remaining active for long 
periods of time. UNIX does provide an available, portable, 
proven environment with excellent system development and 
support tools.

As mentioned above, we opted for a relational dbms to run 
under UNIX. In fact, we use the relational dbms not just to 
produce a particular database but to produce a custom 
database management system for our customers to develop 
their own databases. We provide definitions and support 
structures for the types of data anticipated in our target 
applications. It is then up to the end user to define the 
classes of things desired in their application (houses, 
roads, utility networks, waterways,...).

The relational dbms gives us the flexibility required to 
support a host of diverse applications. The relational 
algebra governing the query language is simple and powerful 
for end users. The reader is referred to [1] for more 
information on the relational dbms. As with any approach to 
any non-trivial task, our path was not without its 
difficulties. Two standard criticisms of the relational 
model for spatial data are that relations are implemented as 
tables with only fixed length fields, thereby wasting a lot 
of space, and that the large number of tables required in a 
normalised database (db) is hard on performance. These two 
problems come together in the fact that each l:many or
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many:many relation must be implemented as a separate 
(binary) table. The relational dbms we use supports both 
variable length text fields and variable length fields of 
undifferentiated content ("bulk"). The former allow us and 
end users to store variable length text without wasting 
space. More structured information, such as lists of 
coordinate triples or pairs, can be put into bulk fields, 
with no wasted space. This addresses the first criticism, 
in that there is no restriction to fixed length fields. The 
second criticism is partially addressed also, since 
information that would otherwise require new tables can be 
put into bulk fields, so long as there is no need to use the 
relational algebra. Further handling of this performance 
question will be described below.

A number of alternatives to our approach exist in the market 
place. These include the use of a proprietary file structure 
with no dbms, some proprietary files with a dbms, and use of 
a dbms without variable length fields. We find that the 
costs of abandoning the dbms: losing the report writer, 
transaction logging, security, recovery, and rollback are 
too great. These same drawbacks arise, to a lesser extent, 
if a dbms is used with some proprietary files. The use of a 
dbms without variable length fields was felt to be too 
wasteful, as noted above.

We found two development paradigms to choose between: 
requirements driven, top-down, structured design and 
development or rapid prototyping with a quick turn-around 
time between prototypes. We opted for the former, although 
our requirements were incomplete, controversial, mutable, 
and inconsistent (i.e. normal). As we were not developing 
the db software in a vacuum - other members of our 
development team needed tools to work with - we made 
prototypes available for internal use as quickly as 
possible. One impact of this necessity was that developing 
the range of functions was more important than performance 
for our internal product. We evaluated performance along the 
way however, with an eye to future improvements. The 
contents of the early prototypes were the data components we 
believed to be necessary for our product. These components 
mainly involved the storing and retrieving of large amounts 
of topographic data. Graphics support data was added later.

We decided to have a small, tight group build the database 
and tools, as opposed to a large, shifting or distributed 
group. The rationale was to create a team atmosphere where 
intimate working relationships would foster a smooth flow of 
ideas and mutual assistance.
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Contents and Queries

Each geographic database contains a mixture of spatial and 
non-spatial (mostly textual) data including definitions of 
the spatial and attribute data to be captured and 
manipulated, on which a wide variety of queries need to be 
supported.

The basis of the spatial data is spatial primitives of 
various topologic types: node, line, and surface. On these 
are built simple features and triangles. Complex features 
are built on simple ones. Interactive assistance is provided 
for defining the structures of simple and complex feature 
classes customers require.

That is, the spatial data are organised: 

e primitives

[I] nodes

[2] simple lines

[3] arcs

[4] smooth curves

[5] circles

[6] surfaces 

» features

[1] simples

[2] triangles

[3] complexes 

Non-spatial data include:

[1] attributes - text, character, (long) integer, or 
floating point - of the various primitives and 
features,

[2] references tying the primitives and features together, 
sometimes taking the form of distinct tables, and 
sometimes variable length fields of either text or 
bulk,

[3] references to attribute data in other databases, which 
may be external to our system,
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[4] definitions of feature classes,

[5] the apparatus to support graphic display, and

[6] support for database management.

Database management depends on the organisation of data into 
databases called projects, with working subsets, also 
databases, called partitions which must be checked in and 
out of projects. This provides a central repository of data 
(the project) with the capability of multi-user access and 
update via the various partitions.

In general, each captured piece of spatial data is stored 
once and may be displayed in a variety of ways, with user 
selection of which other data is to be displayed. Thus data 
content is distinct from data display. Selection of data to 
be displayed is done when the partition is defined. This 
selection is done by choosing a number of "themes". Each 
theme specifies classes of data to be displayed, a scale, 
and graphic attributes for each class. Thus each theme 
provides a way of displaying a subset (possibly all) of the 
spatial and attribute data in the partition. Distinct themes 
may display different data or the same data in different 
ways.

An issue arising from the complexity of the data structures 
involved is the management of shared primitives and 
features. Sharing of primitives and features arises when the 
flexibility of the data structure allows two or more spatial 
entities to build on the same primitive or feature (e.g. a 
road and cadastral parcel might share a boundary linear 
primitive). If a shared primitive or feature is moved or 
deleted, all the features referencing it must be identified 
and updated. Advantages to allowing sharing are that there 
is a saving of space, and that when a shared primitive is 
edited, all features referencing it are, in effect, edited. 
Thus, if a river is a national boundary and the river moves, 
it is not necessary to also update the national boundary. 
In cases where two features are desired to be contiguous, 
but only accidentally, it is easy for the user to create 
them using no shared primitives. The possibility of shared 
primitives showed up clearly in the data model and was 
approved by marketing and users.

The query language sql (tm) is supported by the relational 
dbms, taking advantage of explicit database structure. There 
is here a balance to be maintained between the pull of 
performance which tends to hide structure and the pull of 
the query language which uses it. For example, coordinate 
lists for lines may be stored in bulk fields, reducing the
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number of tables required. On the other hand, standard sql 
is only of limited use for these lists. We found it useful 
to extend sql by adding grammar and vocabulary to handle 
referencing between spatial entities, to handle queries 
based on the values in bulk fields, and to handle spatial 
relationships such as overlap, connectivity, and 
containment. For example suppose we want to select the names 
of all hospitals in Dover in the Kent county partition in 
project England database. Note the method of identifying 
the project and partition in the queries. Assume that 
"hospital" and "town" are (user-defined) feature classes. 
Classes town and hospital have defined attribute "name". 
That is, each town and hospital may have a name. (The user 
specified, during the definition of the project, whether the 
name is mandatory and its maximum length.) The first query 
assumes that each hospital is stored with an attribute 
"town_name".

Select hospital.name from England(Kent)
where hospital.town_name = "Dover"

If the town name is not available, we can retrieve the 
hospital names by looking for hospitals spatially contained 
within Dover. This uses the fact that, in the system, every 
spatial object has a stored minimum enclosing rectangle 
("mer"). This uses an embedded select: first get the mer of 
Dover, and then compare it with hospital mer's.

'><' signifies spatial containment

Select hospital.name from England(Kent) 
where hospital[mer] ><

[select town[mer] from England(Kent) 
where town.name = "Dover"]

The other direction of extension of sql is in the handling 
of data in bulk fields. Selection is supported on values of 
data elements within structures in a bulk field, and based 
on the ordinal position of the structure in the list of 
structures in the field.

For example, it is possible to select lines where the x 
coordinate of a structure in the coordinate list for the 
line is greater than (less than, etc.) a given value. That 
is:

select lines from England(Kent)
where line[coord.x] > 100.0

It is also possible to select lines where the first (second, 
third, etc.) coordinate has a y value satisfying some 
condition.
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Design

We will not deal in this paper with the general question of 
the architecture of the system, except to say that it is 
"modular": in working with the system a number of processes 
must cooperate, communicating with one another. The 
structure of the database part of the system is presented, 
along with a description of the methods and tools used in 
its development.

Five principles governed the design of the interface to the 
database.

[1] It must be object oriented: presenting objects 
intelligible to the end user, with components 
describing the object's properties and relationships. 
Objects are described in detail below.

[2] It must shield the users, both programmers and users 
of the query language, from the underlying tables.

[3] It must use generic low-level update routines to 
minimise the effort and time involved in development.

[4] It must provide a consistent interface to the data. 
This interface should use a limited number of routines 
rather than one routine for each data element. In 
addition, application programmers should be able to go 
to a single source to discover the definitions of the 
objects. These definitions are contained in the TG 
input (see below). Along with a list of all the 
objects and all their components, is a description of 
the data format of each component, with the relevant 
constraints. These constraints include, but are not 
limited to, whether the component is mandatory and 
whether it is read only, write once, or repeatedly 
writable.

[5] Use of a memory cache of objects would minimise file 
I/O. This cache should contain the data being actively 
used by the application. The latter can access data in 
the db tables (relatively slow) or in the cache 
(fast).

The db and management tools may be viewed as a layered whole 
with the relational dbms at the heart. This is surrounded by 
a layer of utility functions to handle variable length 
lists, an object cache, data dictionary routines, and
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generic, db-internal read/write/delete functions. The use of 
these generic routines is crucial since they rely on 
generated code and handle almost all cases uniformly. Around 
this is a layer of application read/write/delete functions, 
functions to manipulate objects in the cache, and functions 
to create, delete, move, open, and close databases. This 
layer provides the consistent, concise application 
interface. Around this is the world of application programs 
and the extended query language.

Application layer: applications, queries

read, write, update routines,
Application interface: cache object functions,

db functions

variable length list functions, 
db internal layer: object cache,

data dictionary functions, 
generic read, write, update routines

kernel: relational dbms

From the point of view of an application accessing a 
database or of an end user, the database contains spatial 
objects such as houses, roads, nodes, lines and non-spatial 
objects such as database definitions, graphic transform 
definitions (for defining display characteristics), and 
themes.

In general terms, an object is characterised by its 
properties and its relations with other objects. Its 
properties include things like its identification number, 
its class identifier, its name, its minimum enclosing 
rectangle, or its description. Possible relations include 
that fact that simple features reference primitives, surface 
primitives reference lines (and perhaps other surfaces), 
complex features reference simpler ones, partitions are 
owned by projects, themes are used by partitions, and 
graphic transforms are associated with simple features and 
primitives, given a theme. Note that the latter is a ternary 
relation (theme + class = graphic transform) which is easily 
handled in our data model, while causing difficulties for 
the entity-relationship model. These properties and 
relations are realised in an object's "components", which 
may be of fixed or variable length. Objects give the 
application programmer, and the query language user a view 
of the data which is independent of the particular tables 
involved, and therefore of changes to the underlying
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implementation. This becomes essential during performance 
tuning and when there are changes to the BDM specification.

Two tools are instrumental in the design, development, and 
evolution of this multi-level object: the Binary Data Model 
("BDM") [2,4,5] and the table generator ("TG").

In brief, the BDM is a way of handling metadata: a method of 
analysing, organising, and presenting information handling 
requirements of a database. It enables system designers to 
work with end users to agree on a mutually comprehensible 
specification of the database contents. It is accepted by 
ANSI/SPARC as the standard for abstract data modelling. From 
this specification it is a simple algorithm to arrive at 
tables for a relational database in at least third normal 
form. The BDM rivals the entity-relationship model, but is 
more expressive and more readily yields a database 
implementation of the specified structures.

Results of analysis of the database requirements are 
expressed in a language which may then be used to produce 
graphical portrayal of the analysis and to produce input to 
TG.

Given this input, TG produces a specification of database 
tables, objects, and mappings between these two views. The 
generic read/write/delete functions rely on these mappings. 
Thus, we have an automated environment which goes from a 
"user friendly" specification of the database contents to 
database tables, object definitions, and functions mapping 
between tables and objects.

Advantages, to the end users and developers, of this 
approach include:

[1] The initial specifications are intelligible to end 
users and function as computer input.

[2] TG eliminates human error in generating tables, 
objects, and functions from the BDM specifications.

[3] It is easy to re-run TG whenever the initial BDM 
specifications change.

[4] TG guarantees that the same algorithm will be 
consistently applied to generate tables and objects. 
(People do move on.)

[5] Guaranteed consistency in data representations: if one
element of the initial specification occurs as fields
in several tables, or as multiple fields in one table,
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we are guaranteed that each occurrence of it has the 
same data format.

[6] The generic read, write, and update routines greatly 
reduce the amount of code to be produced, thereby 
reducing costs and shortening the schedule.

[7] The insulation of the applications from the underlying 
tables makes possible various performance 
enhancements, without having to rewrite all the 
applications.

TG and BDM together are an invaluable time-saver, in 
addition to contributing to the internal consistency of the 
product and ensuring that what the user saw is what the user 
will get.

Performance Considerations

Having produced an initial version of the product, having 
shown the objects and functions described above to be 
feasible, we turned to performance issues.

There are four areas to look at: profiling of code execution 
to determine critical modules, attention to inter-process 
communication, minimising disk I/O, and minimising file I/O.

Rather than spending a lot of time during development trying 
to optimise all the code and algorithms, profiling of in- 
house test code and applications was used to determine the 
bottlenecks. Having found the slow points in execution, 
there are various remedies. Sometimes it is found that code 
is superfluous, perhaps because an integrity check is being 
done twice. Sometimes it is found that an algorithm can be 
improved upon: perhaps it was originally too general or 
simply not the best available for the task. The slow points 
discovered in code execution included:

9 interrogation of internal data structures used to 
convert objects to db tables. The solution was to 
change TG to generate different mapping structures 
which support faster access to the database.

e the functions for handling variable length lists. 
Mechanisms were implemented to force more of the lists 
to remain in memory.

e updating indices when adding significant amounts of 
data. It is much faster to drop the indices during 
update and recreate them afterwards. This assumes that 
the data has enough integrity to guarantee that there
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will be no violations when re-creating unique indices.
Facilities were provided to allow indices associated
with objects to be dropped and recreated.

» queries on the object cache. Cache queries were 
accelerated by implementing an internal indexing scheme 
and by modifying the cache organisation.

» Spatial retrievals from the dbms. These are now 
performed by accessing an internally developed spatial 
indexing scheme. The indexing method is based on two 
dimensional extendible hashing. Initially, the indexing 
software made calls to the variable length list 
handling functions. This was found to be too slow and 
was replaced by a layer of software which manages the 
index directly. Pages from the extendible hash are now 
cached directly in a memory area of fixed size, and 
swapped on an Iru (least recently used) basis.

Performance increases due to code optimisation ranged up to 
thousands of percent in some parts of the system. Overall 
performance has increased by a factor of ten as compared to 
the initial prototype.

Note that the extended query language is not affected by 
these changes since the query language software gets data 
from the db using the application interface layer of the db 
and is immune to changes to the underlying structures.

For the future, a number of possible paths exist. Two of 
these involve further reductions of file and disk I/O. The 
first of these is that cached objects may be stored in a new 
database, using the bulk fields, with many fewer files than 
the original. On this approach, we could reduce the number 
of tables to one, or to the number of object types 
supported. The basic table layout would consist of a primary 
key section followed by a data area: the objects would be 
linearised and stored in bulk fields. One issue here is 
handling of updates: objects store duplicates of 
information, unlike normalised tables. Another route would 
be to develop a table management and caching scheme to 
reside on top of the commercial dbms. In this scheme, we 
would map many records into a single relation managed by the 
dbms vendor. We would be responsible for getting the correct 
data out of the single relation. The mapping could be based 
on pages of records. This is not a trivial amount of work. 
In either case, the object cache manager would be changed to 
use a cache of fixed size, instead of the present, virtually 
infinite cache. The cache manager would be responsible for 
swapping objects or table pages in or out of the cache. A 
prediction algorithm could be used to ensure that desired 
pages are in memory as often as possible.
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The db bottlenecks we found were, for the most part, very 
standard, arising from inefficient algorithms and data 
structures, I/O and the number of tables in the db.

The former problem was dealt with by modifying TG to produce 
more efficient structures, modifying internal routines to 
handle these new structures, and by redesigning the object 
cache to allow fast access to objects in core. It is 
noteworthy that only the internal routines had to be 
changed.

The latter problem was dealt with by reducing the number of 
reads/writes into the relational dbms through better 
utilisation of the object cache, and by replacing the calls 
to the variable length list functions with a layer of 
software to manage a cache of pages of extendible hash 
indices.

The overall modular architecture made it easy for us to 
juggle the number of processes and the grouping of 
functionality into various combinations of processes.

The UNIX 4.2 scheduling algorithm has a bias against large 
processes. On the other hand, inter-process communication 
can be a bottleneck, depending on the frequency and size of 
the information packets being transmitted. A balance must be 
struck among creating a large number of small processes, 
creating a smaller number of (large) processes and making 
efficient use of shared memory for inter-process 
communication. Initially, our design called for our database 
software and application software to run as separate 
processes, with our own inter-process communication software 
linking them. As there is a huge amount of traffic between 
such pairs of processes, it was found to be better to 
combine them.

Conclusions

The standard objections to use of a relational model for 
spatial data are the performance degradation due to the 
large number of tables involved and the need to use fixed 
length fields which waste space. These come together when 
handling line coordinate lists: either use a fixed length 
field, of virtually infinite size and waste a lot space, or 
save space, at the cost of another table and one table 
access for each coordinate in the list.

The latter objection is simply outdated. Relational db 
managers are being extended to support tables with variable
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length fields. Use of a fixed number of fields is not a 
commitment to fixed length fields. Variable length fields 
are useful for storing information about an object (e.g. the 
coordinate lists of lines), for information between objects 
(referencing information) and for storing whole pages of 
data.

The problem of the number of tables required is addressed by 
either linearising objects and placing them in bulk storage 
- so long as the problem of duplicated data is handled - or 
by implementing a proprietary table management scheme which 
would sit on top of the existing dbms.

While we obtain the advantages of a dbms, including 
transaction logging, security, and rollback, we can use 
variable length fields of text or bulk to avoid the problems 
inherent in a strict relational model without variable 
length fields.

The close-knit database development team met all its major 
milestones, and adapted well to shifts of direction and the 
changes required in tuning performance.

The use of the binary data model gives us a precise 
specification which users can evaluate, so there are no 
surprises when the system is delivered. Its use with the 
table generator gave us the ability to respond quickly and 
easily to changes in requirements: eliminating the need for 
repeated hand-crafting of huge amounts of crucial code. In 
addition, TG guarantees, within the limits of its algorithm, 
that what was specified in the BDM is what is built. The use 
of the binary data model and TG greatly enhanced the group's 
ability to supply the needed functions.

A modular, multi-process architecture allows us to optimise 
our use of the underlying UNIX environment by using a 
reasonable number of moderately large processes, with a 
balanced amount of inter-process communication.
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