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ABSTRACT

This paper presents a technique for creating a triangle mesh that 
tightly fits a terrain surface represented by a set of digitized 
contour lines. Basic to the technique is a Medial Axis transformation 
of a polygon, in this case formed by one or more contour lines. The 
advantages of using this mesh rather than the well known Delaunay 
triangulation for computing a gridded Digital Terrain Model (DTM) are 
discussed, as well as widely used spline interpolation methods. An 
example illustrates how the Medial Axis relates to the polygon and 
triangles and thereby facilitates further adjustments to the mesh. 
More complex adjustments to convert the triangulation into a surface 
devoid of unnatural features are described. Anomaly-free DTMs can be 
computed from contours without the supplementary features demanded by 
interpolation and triangulation procedures in use today. Desk-top 
computer programs operating on a small area of a scanned contour 
plate were prepared to test and illustrate the procedures that are 
outlined.

TWO CONTOUR-TO-G-RID METHODS

Converting a given set of contours into a gridded numerical model of 
elevations, commonly called a Digital Terrain Model (DTM), can be 
accomplished by two widely different approaches.

Interpolation Method. The better known approach that is called here 
the 'Interpolation 1 method consists of the following: Vertical planes 
passing through each grid point intersect the source contours. 
Straight lines or planar curves contained in the vertical planes are 
defined by the intersections, and used to interpolate elevations at 
the corresponding grid point. There are numerous reports on 
implementation of this approach and on the nature of the curves used 
in the process. See references in [8,9].

Triangulation Method. The second, less known method, is called the 
'Triangulation 1 method. The triangulation that constitutes the chief 
component for converting from contours to grid is performed by an 
algorithm that selects part or all the points in the source contours 
and establishes with them a mesh of non-overlapping triangles. From 
these triangles grid values are computed.

THE DIM IN BETWEEN SOURCE CONTOURS

Before discussing the problems found in interpolated DTMs, the 
subject of how the DTM is expected to behave in areas devoid of 
sampling should be examined. Obviously, the replication of source 
contours from the DTM should be a concern, although by no means the
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only or the most important one. Until recently, however, and so far 
as this authour could verify, only those few engaged in the creation 
or in the inspection of accurate DTMs considered the variations of a 
DTM away from the sampled areas. A concern so restricted was perhaps 
due to the lack of a reliable model against which a DTM could be 
compared.

Recently, two papers [8,9] have been published on evaluations of a 
number of interpolation techniques. In both papers the source 
contours are derived from a synthetic surface and converted into 
gridded DTMs by applying different interpolation methods. The 
predicted DTM values are then compared to those directly computed 
from the surface equation. A third paper [14] shows the wide 
disagreement in areas of low sampling density between derived 
contours and true contours which were not included in the input data 
set.

A synthetic surface exhibiting a number of formations similar to 
those found in topographic surfaces, as in [8], is a very attractive 
proposition for detecting and measuring DTM undulations. However, for 
accurate DTMs the maximum deviations allowable are smaller than the 
25% of the contour interval which the plots in that paper show as 
lowest error. The plots in a future article would be perhaps very 
revealing if the authors would lower the mimimum error to, let's say, 
3.5% of the contour interval. This is one of the maximum deviations 
established for accurate DTMs in flat areas.

DTMs generated to meet such strict specifications have to pass 
complete and thorough inspections. One of the tests compares a number 
of grid point values against values sampled from the source document.

Other tests developed for the verification of DTMs are mostly visual. 
The display of a grid of first and second differences computed from 
the elevations is an effective test. The differencies tend to 
highlight areas where the undulations introduced by the splines have 
propagated in linear or areal patterns, commonly known as 'unnatural 1 
features. Examples are false dams, false depressions and bumps. Also 
clearly shown are patterns created by the symmetric distribution of 
intersecting planes, especially strong when only two planes are used.

Not surprisingly, the occurrence of unnatural features is higher 
where the spatial coherence of adjacent contours'is lower, as in flat 
areas. Under strict specifications such occurrences must be avoided, 
which interpolation methods can accomplish if additional linear data 
is available. Examples are 'fabricated 1 contours, added to the source 
contours in flat areas. Other additional lines are used by programs 
that follow the interpolation of the grid points. Such are the 
drainage lines, with which the programs perform two functions. First, 
they introduce breaks in the DTM, and second, they remove any false 
dams accross the drainage lines. Supplementary drainage and other 
terrain features are created in low coherence areas, usually in 
correspondence with strong contour sinuosities, and processed 
together with the natural drainage lines.

Adding linear features to a contour set is a task that demands a fair 
amount of training and a good understanding of the entire DTM 
process. Moreover, it is a manual digitization task and consequently, 
costly both in labour and in equipment.
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THE RULED SURFACE BETWEEN CONTOURS

More interesting than anything in a DTM Quality Control document is 
the aforementioned selective point verification. A number of 
elevations at grid points are evaluated, presumably by comparing them 
with elevations extracted from the source topographic map. How are 
these elevations computed? Most likely in the same way a topographer 
of Yesterday interpolated contours. For instance, when he metricized 
a map. Since the operation was manual, he had to use the simplest 
procedure that could be carried out with contour lines.

The topographer proceeded according to the assumption traditional in 
elementary Descriptive Geometry: between contours a terrain surface 
is ruled and not developable. In other words, along certain straight 
lines a topographic surface has constant slope. It follows that DTM 
derived contours ought to be as regularly spaced as possible between 
source contours or, more formally, that distances between derived 
contours measured along lines of maximum gradient should be equal.

Needless to say, if a DTM quality control test is modelled on a ruled 
surface, it makes good sense to design the DTM around the same model.

THE TRIANGULATION APPROACH

The fact that triangulations created from contours have not been 
implemented as frequently as interpolations may be explained by their 
degrees of success. This observation does not apply to triangulations 
of randomly distributed points, such as in meteorology, geology and 
the like, where triangulations are routinely accepted.

The triangulation of a point set used today for most applications is 
Delaunay's [11]. Its tendency to yield triangles as well shaped as 
possible makes it attractive for applications using functions with 
singularities at very small angles. It is even more attractive 
because its uniqueness, which in turn makes the task of programming 
it light. The disadvantages are, first, a special configuration of 
points that must be considered [11] , second, thin, sliver-like 
triangles along the perimeter of the mesh, which Delaunay algorithms 
create just to achieve convexity, and third and most important, that 
if a 'brute force 1 approach is taken, the processing time may grow 
beyond realistic possibilities.

Many solutions have been proposed to reduce the growth of the 
processing time to more manageable limits. Almost all of them exploit 
the principle of 'Divide and Conquer 1 lucidly exposed in [1], and 
ought to be applied to all triangulations of great numbers of 
scattered data points.

With the exception of those concerned with a distance optimality, all 
the examples known to this author on triangulations of point sets are 
Delaunay's. So do the few Contour-to-Grid conversions by 
triangulation: two commercial Site Engineering packages and the 
implementations in [10,13.]

Applied to contours, the Delaunay triangulation knowns only of 
contour points. The fact that the points are connected in the shape 
of contours is not considered. Consequently, poorly configured 
triangles may result. A case is that of a triangle edge crossing a 
contour segment. The triangle edge, now supposedly an element on the
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terrain surface, may have in correspondence with the contour segment 
an elevation different to that of the contour. If the crossed contour 
is higher or lower than both adjacent contours, the error amounts to 
100% of the contour interval, see Fig.l. To prevent such 
configurations all the contour segments should be selected as 
triangle edges, which is a proposition that invalidates the Delaunay 
triangulation as applied to the entire set of contour points. See in 
Figure 1 a catastrophic false dam.

Figure 1. Contour crossing Figure 2. Flattening along contours

A second case is that of a triangle with its three vertices on the 
same contour. Such triangles cause breaks in the surface and should 
be avoided if the DTM is to be smooth between contours. Perhaps the 
most striking result of this poor configuration are horizontal bands 
of triangles produced along sections of contours, Fig. 2, and beyond 
the band areas slopes slightly steeper than what they really should 
be.

Avoiding the crossing of contours. The contour crossing case could be 
avoided by performing Delaunay triangulations in between adjacent 
contours, which means that the entire map would be covered with many 
triangulations, each of them executed independently of the others. 
Besides avoiding the contour crossing, this procedure will greatly 
alleviate the processing time problem, since the contours provide 
natural boundaries for the application of the 'Divide and Conquer 1 
principle. There is no need for artificial divisions when contours 
are present. Indeed the triangulation of a point set inside a closed 
shape is not a novel idea, although this author has not yet seen it 
applied to topographic surfaces. The field of Pattern Recognition 
offers one example [7]. Heuristic and optimal triangulations, 
non-Delaunay, of bands limited by successive planar contours, have 
been proposed in [4,5,6] for the reconstruction of 3D surfaces. 
However, these references must not be interpreted as suggesting that 
such techniques can be applied to topographic surfaces. Terrain 
surfaces are single value functions of two variables, but they can be 
far more topologically complex than the true 3D surfaces of the type 
reconstructed using the reported techniques.

Because of the aforementioned topological complexity, the Delaunay 
triangulations inside a closed shape, with islands added, is not as 
easy a proposition for computer programming as the general Delaunay 
triangulation.

Horizontal Triangle Case. The second objection to the general 
Delaunay triangulation, triangles with their three vertices on the 
same contour, is not so easily removed. It will be discussed later.

It must be noted that the critiques in this paper to the general 
Delaunay triangulation of contour maps ends precisely with the
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triangulation. After the triangulation has been established, other 
procedures may be used to reshape it, for instance, exchanging edges 
so that they would not intersect contours, while others might even 
fit high order surfaces to the planar triangles for computing grid 
points. The availability of such follow-up procedures does not negate 
the conclusions of this paper.

THE MEDIAL AXIS TRANSFORMATION

This author's opportunity for experimenting with some old ideas on 
how to create a ruled surface from contours arose from the need for a 
procedure to thicken or widen line features. This need was satisfied 
by developing a 'Parallel Pairs' procedure, published elsewhere [3], 
that also suggested possibilites for solving some other problems. One 
of these problems was the 'Medial Axis Transformation', an operation 
which turned out to be basic to the Contour-to-Grid solution 
described in the next sections.

The Medial Axis [7,12] or midline, of a closed shape or polygon, is, 
rougly, a network of lines whose elements are equidistant from the 
closest pairs of elements in the shape. The Medial Axis is defined in 
vector environments. In a raster environment, it corresponds to the 
skeleton of a shape. In computer operations, the Medial Axis 
transformation corresponds to the raster 'thinning 1 or 
'skeletonizing' operation with which commercial scanners are often 
provided. The thinning operation, coupled with the raster-to-vector 
conversion that comes with commercial scanners, make a fast and 
robust tool for generating the Medial Axis. There is an abundant 
literature on thinning, see for instance [2], The vector mode 
operation seems to be less popular.

The output of the Parallel Pairs procedure is a set of polygons 
nested inside the input polygon, see Fig.3, with which the 
determination of the Medial Axis is accomplished in an efficient way. 
Exhaustive searches become unnecessary, as reported in [3] , because 
the Parallel Pairs are loaded with pointers that indicate through 
which points the Medial Axis should be threaded. Pointers extracted 
from the parallel pairs are loaded into the Medial Axis as well, 
linking its elements to the equidistant edges of the input polygon.

Figure 3. Dense parallel pairs and Medial Axis. 
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Advantages of determining the Medial Axis in raster rather than in 
vector mode are simplicity in programming, robustness, and perhaps 
time performance. Disadvantages are inflexibility, lack of structure 
and the need for a raster-to-vector conversion that follows the 
thinning operation. Inflexibility arises from the fixed resolution of 
a raster system. All the polygons in the file, irrespective of their 
particular shapes and dimensions, are processed with the same 
resolution.

Lack of structure refers to the absence of pointers and other 
features that facilitate further operations. The raster skeleton 
cannot be related to the polygon edges, at least in today's 
commercial software. Nor is easy to see how it could possibly be 
done, when the input is just a raster image. If the skeleton and the 
polygon together must be processed further, as in the case discussed 
here, the lack of structure would surely offset any time saved by the 
raster mode operation.

On the contrary, the vector approach offers flexibility and a 
potential for structure. Its flexibility is found in the wider range 
of the arithmetic that is used. The Parallel Pairs procedure, as part 
of a Medial Axis Transformation, increases that flexibility by 
providing the very significant option for changing offsets in the 
nesting of polygons. See Fig. 3. It also provides structure in the 
pointers referred to earlier.

Figure 4. Parallel pairs in a section of a contour sheet

Figure 4 shows a small section of a contour sheet, with nested 
polygons generated with offsets greater than those used for figure 3. 
The original was a 1:50000 topographic sheet, scanned at 16 lines/mm 
resolution. At the original scale the area illustrated here measured
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2 by 1.2 cm. The nested polygons were created in the areas bound by 
adjacent contours, in a process that was run separately for each 
area. They were then merged and plotted. The smallness and low speed 
of the desk-top computer used to prepare the software, resulted in 
data sets that are very limited in complexity.

THE TRIANGULATION OF A POLYGON AND ITS MEDIAL AXIS

As noted earlier, a Delaunay Triangulation, be it applied to 
disconnected contour points or executed inside a closed contour 
polygon, in many cases will select the three vertices of a triangle 
from the same contour, and that these horizontal triangles introduce 
breaks that do not provide a natural gradient to the surface. This is 
a problem that could not be ignored.

That problem can be solved by using the Medial Axis because there are 
always points on the Axis that can be connected to the contour 
points. The triangulation uses the Medial Axis points to bridge the 
spans between contours. Furthermore, because it is executed between 
contours, this triangulation does not cross them. Because each Axis 
can be given the mean of the contour elevations, the triangles on 
both sides of the Axis will have the same slope. With this procedure 
the Medial Axis itself will not turn out to be an unnatural feature.

In the program prepared to test the proposed solution, the vertices 
of the triangles are selected with a simple rule: the base of a 
triangle is defined by two consecutive points, either from the 
contours or from the Axis. If from the contours, then the apex of the 
triangle is selected from the Axis, and vice-versa. The pointers in 
the Axis tell the process from which entity, contour or Axis, to 
select the next base. Executed in this way, the triangulation program 
is extremely fast. Fig. 5 shows the triangles established in the same 
small contour shape of Fig.3.

Figure 5. Triangulation of contour shape and Medial Axis

Assigning elevations to the Medial Axis. A quick look at a few shapes 
and their Medial Axes leads to the following classification. As
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regards points, only the endpoints of a line, called nodes, are 
considered. The number of lines incident to a node is called the 
'degree of incidence 1 . These are Graph Theory terms. Lines can be 
classified as open or closed. A closed line has only one node and 
this is of degree 2. As Medial Axis, a closed line is a rarity. Open 
lines are classified here as Main lines and Branches. A Main line has 
its two node of degrees 2 or higher, or both of degree 1. Branches 
have one and only one node of degree 1, the dangling endpoint. With 
this classification is is possible to conclude, in a general way, 
that Main lines are connected, by means of the triangle edges, to two 
different contours. Branches to only one contour. See Fig. 5.

One part of the triangle vertices, those on the contours, can only be 
given the corresponding contour elevation. As for assigning 
elevations to the rest, on the Medial Axis, it is necessary first to 
make an assumption on which elevation to give to the Medial Axis.

Figure 6. Derived contours for a Medial Axis with constant elevation

Figure 7. Derived contours for a Medial Axis with adjusted elevations

64



To avoid turning the Main lines into unnatural features, their points 
should be given the mean of the elevations of the contours with which 
each Main line is connected. The same cannot be done with the 
Branches. If they are given the same mean as the Main lines, the 
result will be a strong gradient located at the end of the Branch. 
Fig. 6 shows the contouring of the triangulation executed under this 
assumption. Notice how the contours are crowded at the end of the 
various Branches. A more natural look and a better approximation to a 
ruled surface is achieved by assigning variable elevations to the 
Branches. Fig. 7 was obtained with an option of the experimental 
software, which assigns to the Branches' points elevations 
proportional to the distances measured along the Branch from the 
non-dangling node. The proportionality is established between the 
difference in elevation, mean minus contour/ and the length of the 
Branch plus the length of the shortest edge that connect the dangling 
end of the Branch with the contour. The better quality of the result, 
compared with the one obtained by giving constant elevation to the 
Axis, is evidenced in Fig.7: better spaced derived contours along all 
the Branches.

THE OONTOUR-TO-GRID PROPOSED SOLUTION

The Medial Axis transformation and the simple triangulation that 
comes after it are just two, if important, steps in the proposed 
solution. To make the operation of the Parallel Pairs possible, and 
in general, to improve the time performance of the software, as well 
to simplify its overall design, the input contours must be 
preprocessed.

Preprocessing of contours. First, all the contours are assumed 
distinct and without gaps. Those that reach the map borders must be 
turned into closed lines. In doing so, the closing lines ought to be 
such that the nested polygons would have the proper orientation when 
crossing the map borders. Figure 8, to be inspected together with 
Figure 4, shows how this was done with a simple program.

Second, adjacency 
relationships and 
containment should 
be introduced 
in the source 
contours and 
spot heights. 
These relation 
ships are needed, 
inter-alia, for 
assembling pairs 
of contours into 
the shapes to be 
triangulated. The 
abundant
literature on this 
subject make 
unnecessary any 
explanations. 
Third.Although not 
strictly needed, 
it is convenient 
to obtain from the 

Figure 8. Contours closed beyond map borders

65



contours some measures of size and their proximity to each other.

The last two requirements can be best satisfied by programs operating 
in raster mode at the time the contours are vectorized. If a 
commercial vectorizer is being used, it will be necessary to 
rasterize the contours before running these programs.

After the preprocessing of the contours, the Medial Axis is 
determined, as already described, for each of the areas enclosed by 
one or by two succesive contours. This step is followed by the 
triangulation of those areas, which in turn is followed by the 
computation of the grid.

The Grid from Triangles. The computation of the grid values from the 
triangles, if these are considered planar, is a simple operation and 
does not merit any reference here.

However, if a smoother surface is desired, the triangles may be 
turned into curved patches that preserve continuity accross edges. 
There are many ways of defining such patches. The issue, in the view 
of this author, is not how to do it, but whether or not to do it, and 
the answer, on technical grounds only, is no. Yet, if some smoothing 
is still wanted, it will be enough to break the triangles at their 
half heights, and to assign to the breaks elevations that reflect a 
curvature along lines of maximum gradient. Of course, in directions 
normal to these lines, any smoothing would be still more superfluous.

Tops and Depressions. Shown in a contour sheet as empty closed lines, 
they have preocupied the advocates of triangulations since very 
early. In most cases, these closed contours do not include spot 
heights in sufficient numbers and proper distribution to ensure a 
good reconstruction of the terrain. The results are 'truncated tops' 
and 'flattened depressions' in the DTM. To produce a correct DTM the 
user will have to create automatically, or by hand, the right number 
of spot heights in the right places. The Medial Axis provides an 
automated solution to this problem. Figure 9 shows the Medial Axis 
and the resulting triangulation of a top contour.

Assigning elevations to a top contour or to a depression is done 
either by resorting to the spot heights or to the triangles adjacent 
to the contour in question. From those triangles slopes can be 
extracted and then applied to the triangles inside the top contour Or 
depression. The procedure followed for assigning elevations is very 
much the same used for contour polygons in the general case.

Figure 9. Medial Axis 
and triangulation 
of top contour

CONCLUSIONS

The Medial Axis provides the means for triangulating contours in 
optimal configurations, from which an accurate gridded DTM can easily 
be computed. This DTM behaves like a ruled surface, and consequently, 
does not exhibit any of the unnatural features introduced by spline
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interpolations, nor the breaks and false dams created by Delaunay 
triangulations. The discussions of these techniques were done with 
strictly specified DTMs in rnind. It is hoped, however, that the 
precise fit of the triangulation described here will facilitate the 
introduction of accurate DTMs into fields where profiling and 
cross-sectioning are still prevalent.
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