
GEOGRAPHIC INFORMATION PROCESSING
IN THE PROBE DATABASE SYSTEM*

Frank Manola, Jack Orenstem, Umeshwar Dayal
Computer Corporation of America

Four Cambridge Center
Cambridge, Massachusetts 02142

ABSTRACT
This paper describes the facilities of PROBE, an object-oriented DBMS being developed
at CCA (Dayal 1985, Dayal and Smith 1986). and how these facilities apply to the require
ments of geographic information processing

INTRODUCTION
The application of database technology to new applications, such as geographic informa
tion systems, CAD/CAM, software engineering, and office automation, is an extremely
active area of database research. The characteristics of these applications impose a
number of requirements on supporting database systems that are "unconventional" when
compared to requirements associated with conventional commercial database applications.
For example, the requirements of conventional applications can be adequately modeled by
relatively simple and regular .data structures, such as tables (relations), and a small,
predefined set of operations on those structures On the other hand, GISs must deal with
objects, such as features, that have complex and irregular structures Moreover, these
objects will be created and operated on by a complex set of processes Such objects can
not be easily modeled by collections of simple attribute values, or by uniform database
operations such as reads and writes Also, unlike commercially-oriented DBMSs which
maintain only one up-to-date version of any record, a GIS may be required to maintain
many different "versions" of information about the same object (e g , information at
different scales, in both raster and vector forms, compiled at different times) Finally,
commercially-oriented DBMSs are able to be fairly rigid in the class of data structures and
processes on them that are supported, forcing users to adapt their requirements to these
capabilities GISs have a greater requirement for adaptability, both to accomodate the
diversity of specialized spatial data structures currently used in various applications, and
to accommodate changes in technology and data requirements over the system life-cycle

In response to these requirements, a number of DBMS research organizations are pursuing
development of "object-oriented" DBMSs (Dittrich and Dayal 1986, Lochovsky 1985,
Manola and Orenstem 1986) These DBMSs allow meaningful application objects to be
more-or-less directly modeled in the database Objects are accessed and manipulated only
by invoking operations meaningful to the application, and specifically defined for the type
of object involved Data structures, and details of the implementation of the objects and
operations can be hidden, or revealed only to specialized processes as needed Moreover,
new object types, with their own specialized operations, may be freely defined by users for
their own applications, rather than having to rely only on predefined, built-in data struc
tures and operations PROBE is an object-oriented database system being developed by
Computer Corporation of America This paper describes the basic features of the PROBE
database system, and shows how they apply to GIS requirements The paper begins by
describing the PROBE Data Model (PDM), and its spatial data capabilities This data

"'This work was supported by the Defence Advanced Research Projects Agencv and by
the Space and Naval Warfare Systems Command under Contract No NOOO'W-So-C'-
0263 The views and conclusions contained in this paper are those of the authors and
do not necessarily represent the official policies of the Defense Advanced Research Pro
jects Agency, the Space and Naval Warfare Systems Command, or the U S Govern
ment

316

model is an object-oriented extension to a data model called Daplex previously developed
and implemented at CCA (Shipman 1981). The utility of Daplex in spatial data modeling
has been described in (Norris-Sherborn and Milne 1986). The paper then describes our
approach to incorporating spatial data processing into database operations, and other
aspects of the PROBE system. The paper concludes by describing the current status of
the system.

PDM DATA OBJECTS
There are two basic types of data objects in PDM, entities and functions An entity is a
data object that denotes some individual thing The basic characteristic of an entity that
must be preserved in the model is its distinct identity. Entities with similar characteristics
are grouped into collections called entity types For example, a GIS might have an entity
type FEATURE, representing geographic features

Properties of entities, relationships between entities, and operations on entities are all uni
formly represented in PDM by functions Thus, in order to acres?, properties of an entity
or other entities related to an entity, or to perform operation* on Ati entity one must
evaluate a function having the entity as an argument For example

• the single-argument function POPULATION(CITY) —» integer allows access to
the value of the population attribute of a CITY entity

• function LOCATION(PT_FEATURE) -» (LATITUDE,LONGITUDE)
allows access to the value of the location attribute of a point feature (note that a
function can return a complex result)

• the multi-argument function
ALTITUDE(LATITUDE,LONGITUDE,MODEL) -> HEIGHT
allows access to the altitude values contained in a digital terrain model

• function COMPONENTS(FEATURE) -» set of FEATURE allows access to
the component features of a group feature (such as a city).

• function OVERLAY(LAYER,LAYEiy -> LAYER provides access to an over
lay operation defined for sets of polygons separated into different coverage layers

Functions may also be defined that have no input arguments, or that have only boolean
(truth valued) results. For example.

• the zero-argument function FEATURE() —>• set of ENTITY is implicitly denned
for entity type FEATURE, and returns all entities of that type (such a function is
implicitly defined for each entity type in the database).

• the function OVERLAPS(POLYGON,POLYGON) -> boolean defines a
predicate that is true if two polygons geometrically overlap All predicates within
PDM are denned as boolean-valued functions

In PDM, a function is generically defined as a relationship between collections of entities
and scalar values. The types of an entity serve to define what functions may be applied
with the entity as a parameter value There are two general classes of functions
intensionally-defined (ID) functions, with output values computed by procedures, and
extensionally-defined (ED) functions, with output values determined by conventional
database search of a stored function extent (ID-functions may also involve the use of
stored extents, in addition to computation.) References to all functions are treated syntac
tically as if they were references to ID-functions, even when a stored extent exists, rather
than treating the various classes of functions differently However, particularly in the taso
of ED-functions, functions can often be evaluated "m reverse" i e , with "output" variables
bound, to return "input" values (since both are available in a stored extent)

317

Entity types may be divided into subtypes, forming what are known as generalization
hierarchies For example, one might define POINT_FEATURE as a subtype of
FEATURE, and RADIO.ANTENNA as a subtype of POINT_FEATURE. As
another example, the declarations

entity LANDJDIVISION
DESCRIPTION(LAND_DIVISION) -> character
AREA(LANDJDIVISION) -» POLYGON

entity OWNED_PARCEL isa LANDJDIVISION
OWNERSHIP(OWNED_PARCEL) -* OWNER
define a LANDJDIVISION entity type having two functions, and a subtype
OWNED_PARCEL having an additional function. Because OWNED_PARCEL is a
subtype of LANDJDIVISION. any entity of type OWNEDJPARCEL is also an
entity of the LANDJDIVISION supertype, and automatic-,ill> 'inherits" r.he
DESCRIPTION and AREA functions On the other hand it sometimes desirable that
specialized versions of what appears to be the "same function" be available for different
subtypes F_or example, one might wish to provide a general SQ_MILES function to
compute the number of square miles in any 2-dimensional shape, but have different spe
cialized implementations for various representations of those shapes

At the top of the generalization hierarchy, both entities and functions are members of the
generic type OBJECT. In addition, the entity and function type definitions themselves
are modeled as a collection of entities and functions, so that information in database
definitions can be queried in the same way as database data.

Generic operations on objects (entities and functions), such as selection, function applica
tion, set operations, and formation of new derived function extents, have been defined in
the form of an algebra (Manola and Dayal 1986) similar in some respects to the algebra
defined for the relational data model Like the relational algebra, our PDM algebra pro
vides a formal basis for the definition of general database operations. In particular, the
algebra serves to define the semantics of expressions in our query language, PDM Daplex,
involving functions and entities, such as- °

for C in CITY, for M in MAP
print(NAME(C)) where

POPULATION(C) > 50000
and SQJVIILES(AREA(C,M)) < 10

This object-oriented approach has a number of advantages for a GIS. First, geographic
data can be dealt with at a level of abstraction appropriate for the processing involved, as
suggested in (Claire and Guptill 1982) For example, some users may wish to operate only
at the "feature" level, ignoring how a feature may be represented in terms of geometric
entities such as polygons, or how these polygons may be represented in terms of lower level
constructs, such as vectors nodes or < hams or their physical encodings This is true even
when the users wish to use selection predicates or invoke operations involving geometric
properties of features, since the functions can conceal their access to geometric or lower
level objects (a terrain model may, for example, be in either regular grid or TIN form
without affecting the user's view of the ALTITUDE function). Second, the use of the
functional syntax provides a smooth interface between stored data and computations in
the model (for example, interpolation in a digital terrain model). These computations may
include complex cartographic processes and knowledge-based techniques (which may be
implemented by specialized hardware or software), even when these are not part of the
DBMS per se ; since the processes can be represented by functions in the model, and refer
enced within "database" requests \siam the fun< t loiuil sv nta\ allows the exact nature of
required processing to be hidden when this is appropriate, and provides a uniform syntac
tic approach throughout the model

318

SPECIALIZATIONS FOR SPATIAL DATA
The general objects and operations provided by PDM do not obviate the need to define
specialized spatial object types for specific applications, or the need to define the details of
the implementation of spatial objects in terms of discrete representations in computer
storage, and operations on them. They do, however, provide a framework within which
these can be smoothly incorporated in an overall system architecture As suggested by the
examples above, we model spatial properties of entities by functions (such as AREA) that
map from the entities (such as a LAND_DIVISION) to entities of special types (such as
POLYGON) that denote sets of points m space (such as lines, areas, or volumes), and
embody various specific representations of such point sets. These special types are defined
as subtypes of the generic spatial type PTSET, which represents a general set of points.

Only the most general point set semantics are defined for the PTSET type The detailed
behavior and characteristics of spatial entities required for particular applications are
defined in subtypes of PTSET defined to represent specialized < lasses of point, sets (e g
2D and .'5D point hets), and sp<;cific types of objects within those general classes (p g . 2D
lines and curves, 3D solids) (Points and intervals can also be defined in the same way to
represent temporal objects, thus allowing many different concepts of both space and time
to be modeled) For each subtype, additional specialized functions are defined to
represent the user-visible spatial or nonspatial properties, predicates, and operations
appropriate to the type of object being represented. Moreover, "internal" functions, hid
den from outside the object, are defined to represent aspects of the implementation of the
object. Attributes, such as ALTITUDE, that vary in (2D) space can be represented by
multiargument functions

For example, we might define subtype POLYGON as:

entity POLYGON
internal:
EXACT_POLYGON(POLYGON) -> set of EXACT.REP
GF_POLYGON(POLYGON) -> set of ELEMENT
Entities of type POLYGON store the actual representations of polygons. Subtypes such
as POLYGON required for geographic applications would incorporate the mathematical
constraints required to correctly represent a closed, bounded 2-dimensional shape, together
with its topological relationships to other spatial entities The details of these representa
tions are hidden from the general-purpose database routines within PROBE, but are used
by specialized functions added specifically to manipulate polygons, and requiring access to
the details of internal representations In this case, function EXACT_POLYGON,
given a polygon, returns a set of entities defining the exact representation of the polygon,
while function GF_POLYGON returns the PROBE geometry filter's representation of
the polygon: a collection of elements resulting from the decomposition of the polygon
(described in the next section)

Facilities for adding such specialized entity subtypes and functions are provided within
PROBE These subypes would either inherit the definitions of operations from the
PTSET type, or would provide specialized versions of such operations For example, if
the intersection of two entities of the type POLYGON were expected to produce only
common subareas (i.e , a result of the same type), a specialized version of the intersection
operation would be required, since an ordinary point set intersection might also return
common boundary segments (or points), or even shared components of the underlying
representations. (Such dimensionally-constrained set operations are known as "regularized
set operations" in the 3D solid modeling literature (Requicha 1980)).

In addition to dealing with PTSET entitle-, as individual objects, there are main situa
tions in which it is necessary to deal with PT^ET-. contained within other PTSET-. Tor
example, a map would be defined as containing a. inllection of component objects (roads
land units, etc) The POLYGON defining the ^patial representation of the map would
have to contain all the PTSET entities (polygons and other representations) of those
components (together with the complex topological relationships among them) Moreover,
a component representing a complex feature may itself contain further subcomponents, and
so on Thus, both the map and its component objects, and their associated spatial

319

representations, naturally exhibit a hierarchical structure. While it is not possible to deal
with this subject further in this paper, PROBE includes facilities both for modeling these
containment relationships, and for efficiently processing queries involving them (Orenstem
and Manola 1986, Rosenthal 1986).

By using different functions (or a single set-valued function), a database entity can be
related to any number of different spatial representations For example, a bridge might be
represented as a point in one map, as a line in a map showing greater detail, as a space
frame in its design data, etc Also, as suggested above, the 2D point set representing the
bridge in a particular map can be associated with the point set representing the area
covered by the entire map, enabling the bridge to be associated (and located) with respect
to the other features in the same map

QUERY PROCESSING
For a DBMS to be practically usable in a gi\en application, it must provide adequate per
formance A key component of the DB.V1S in determining its performance ia IK querv pro
cessor, since this is where efficient strategies for performing database operation^ are deter
mined. A considerable literature exists on query optimization strategies for conventional
database systems. However, because a conventional database system provides only a fixed
set of data types and operations, support for those types and operations can be coded
directly into the physical data structures and algorithms of the DBMS query processor
This simphes the optimization problem considerably.

An extensible database system, such as PROBE, is more difficult to implement because it
is no longer possible to build into the query processor's implementation the definition of
each data type and operation that may be encountered. Instead, the extensibility of the
system implies that some important details of the system will be provided in user-defined
object types For example, for the query.

for S in STATE where NAME(S) = "Florida"
for C in CITY where AREA(C) is in AREA(S)

print(NAME(C));
the AREA functions might return values of a user-defined specialized data type, and the
processing of the is in predicate might be implemented by a user-supplied procedure
whose implementation details are hidden from the query processor

A reasonable division of labor would be for the query processor to handle sets of objects of
the most generic types (e g , ENTITY and PTSET) and for the more specialized object
types to provide for detailed manipulation of individual objects This allows DBMS imple-
mentors to be concerned primarily with generic database issues, while application special
ists can concern themselves primarily with application-specific issues. For example, an
application specialist could define a POLYGON object class whose operations work on
individual polygons (e g. do two polygons overlap 7 does the polygon contain a point? what
is the area of a polygon 7) The DBMS can then implement operations chat handle arbi
trary numbers of polygons (e g find all the polygons overlapping a given polygon) in terms
of these operations

Given this division of labor, how can the data model, especially its spatial components, be
supported efficiently? Our approach to the problem has two components. First, we
present an architecture compatible with the division of labor discussed above. Second, we
describe how the efficient processing of spatial data can be accomplished under this archi
tecture. This step is necessary to show that PROBE's approach to spatial data is feasible
as well as general

Architecture for the Query Processor

Many queries (including spatial queries) can be expressed in terms of iteration over one
or more collections of objects, and the application of one or more functions to each object
or to a group of objects within the iteration For example, in order to find all pairs of
objects in a set, S, of spatial objects, within a given distance, d, of one another, the follow
ing algorithm can be used:

320

for each x in S, for each y in S
if distance(x,y) < d then output (x, y)

(It is a simple matter to eliminate symmetric results (x overlaps y iff y overlaps x) and
reflexive results (x always overlaps x).) This kind of algorithm is very compatible with the
division of labor discussed above The database system can handle the iterations, passing
pairs of objects to a distance function (part of a spatial object class) whose boolean result
indicates whether the pair should be part of the output This architecture is shown in
figure 1

The problem with this approach is one of performance. Each loop over a set of spatial
objects corresponds to an actual scan of the set Nesting these loops leads to polynomial
time algorithms (whose degree is equal to the level of nesting). This will not be acceptable
in practice since much more efficient, special-purpose algorithms often exist However, it is
not possible to build in a collection of special-purpose algorithms and retain generality It
is therefore necessary to consider another architecture

The PROBE approach is to provide a generally useful geometry filter that helps optimize
such nested loops The output from the filter will be a set of candidate objects (or a set of
groups of objects) that satisfy the query Any object or group that is not included in the
candidate set is certain not to satisfy the query. An object or group in the candidate set is
likely to satisfy the query. The set of candidates will then be refined to yield the precise
answer by applying user-supplied predicates (such as distance). This architecture is
shown in figure 2.

Note that this architecture is also compatible with the division of labor described above.
The user only has to supply, as part of a spatial object class, a predicate that tests a group
of objects. The geometry filter is part of the database system and relies on another object
class (ELEMENT in figure 2) that is provided as part of PROBE The ideas behind the
geometry filter and the ELEMENT object class are described below.

How the Geometry Filter Works

The geometry filter is based on a grid representation of spatial data. For a spatial object,
s, a grid cell that contains any part of s is "black" while a grid cell that is completely out
side s is "white" The collection of black cells forms a conservative approximation of s In
order for the geometry filter to retain its filtering property (i e. not discard positive
results), it is important for the approximation to be conservative - le contain the exact
representation This is because positive results are indicated by the overlap of objects A
non-conservative approximation does not necessarily contain the exact representation and
some overlap relationships involving the exact representation would not be detected by the
approximation (Unless stated otherwise, all results in this section are from (Orenstein
1986, Orenstein and Manola 1986).)

Many spatial operations can be carried out in a single scan of a grid, replacing the nested
loops algorithms described above The problem with this approach is that grids can be
verv large (at high resolution), and that, as a result, a scan of the grid will be very slow
However, it is usually the case that spatial data contains much regularity There will be
large black regions and large white regions The geometry filter exploits this regularity by
using a compact encoding of these regions of uniformity. Each spatial object is represented
by a collection of rectangular regions called "elements" Each element can, in turn, be
represented by a range of integers. Typically, a 32-bit word is sufficient to represent an
element

Elements are obtained by partitioning the grid in a highly constrained way As a result,
elements have some simple and useful mathematical properties

• The size, shape and position of an element can be described very concisely by a "z
value" - a short string of bits (Orenstein 1984) The same encoding has been
discovered independently by several other researchers (Abel and Smith 1983, Gar-
gantini 1982, Mark and Lauzon 1985)

321

• Any two elements either contain one another or precede one another (when ordered
by z value). Overlap (except for containment) cannot occur.

• In a sequence of elements sorted by z value, proximity in the sequence is highly
correlated with proximity in space.

These properties lead to simple and efficient algorithms for a wide variety of spatial prob
lems The scan of the grid cells is replaced by a scan or merge of z-ordered sequences of
elements. Algorithms of this kind are possible because of the absence of overlap relation
ships

The performance of these algorithms looks promising for two reasons, first, the property
that proximity in z-value corresponds to proximity in space leads to good clustering Data
base implementers go to great lengths to ensure that records to be retrieved together are
stored near each other, ideally on the same page or cylinder fe g , see (Lone 1977)) In
spatial applications, objects that are near each other are often retrieved together, arid z
order maps this proximity to proximity in real storage devices Second, with some simple
reasoning about z values, it is possible to "skip" parts of a space that could not contribute
to the result This reasoning has been incorporated into the geometry filter algorithms and
there is analytical and experimental evidence that the savings are substantial The perfor
mance for range queries matches that of the best practical data structures (e g. the kd
tree).

The representation used by the geometry filter, the collection of elements, can be seen as
an abstraction of the quadtree and all its variants There is an exact correspondence
between a leaf of a quadtree and an element of the geometry filter (The quadtree can be
seen as a trie of order 4, keyed by elements Similarly, the octtree can be seen as a trie of
order 8, keyed by elements) However, instead of requiring the use of a particular data
structure, geometry filter algorithms can use any data structure or file organization that
supports random and sequential accessing This is a very important consideration since it
permits the use of efficient and widely available structures such as sorted arrays, binary
trees (and variations), B-trees (and variations), ISAM, etc

The geometry filter supports a wide variety of spatial operations, including many opera
tions for which the quadtree and related structures have been proposed Given two sets of
spatial objects, R and S, spatial-join(R, S) locates pairs of objects (r, s) such that r
belongs to R, s belongs to S, and r and s overlap spatially This operation can be used to
evaluate range queries, partial match queries (important in database systems), containment
queries and proximity queries. It has also been applied to interference detection and to
polygon overlay.

EXAMPLE
(Zobrist and Nagy 1981) give several examples of multistep, geographic information pro
cessing tasks that demonstrate the need for manipulation, integration, and conversion of
geographic data stored in different representations (without going into how the various
steps might be implemented in a database system) To demonstrate the use of PROBE
for geographic information processing, we now "translate" some of the processing from one
of the examples into steps that could be carried out in PROBE

The example selected is a study of the California Desert Conservation Area. We will con
centrate on the latter part of the example, after multiple sources of data (such as
LANDS AT frames and digital terrain data) have been integrated to yield, for each point
of the study area, a classification (Other steps in the example could be modeled in
PROBE as well for example, geometric transformations stored as PROBE ID-function?
can be applied to LANDSAT images stored as PROBE point set entities similarly
vector/raster conversion routines itored as PROBE functions can be applied to boundary
files stored as PROBE objects)

To model the data and the required computations, we use the entity types
LAND_DIVISION. OWNED_PARCEL, and POLYGON defined earlier, and
additional types and functions such as

322

entity IMAGE
PIXELS(IMAGE) - set of PIXEL
COVERAGE(IMAGE) -> POLYGON
CLASS(IMAGE,PIXEL) -> CLASS.VALUE
QUALITY(IMAGE) -> RATING

RASTERIZE(POLYGON) -> set of PIXEL
PIXEL_TO_ACRE(integer) -> ACRE
An entity of type LAND_DIVISION represents the area of study In this case, its
NAME function would return "California Desert Conservation Area" An entity of type
OWNED_PARCEL identifies a parcel of land whose owner can be identified. Since
both are entities of supertype LAND_DIVISION. they have an AREA function that
returns a polygon (assumed to have absolute coordinates) describing the land area
IMAGE defines an image object, \\ith a CL.vSS function i licit gives ,i c lassific ation value
(vegetation, urban, etc) for each pixel for e.u h image and a COVERAGE function
defining its area of coverage. By specifying constraints on the values of image attributes
such as COVERAGE and QUALITY a set of images can be identified RASTER-
IZE is an ID-function that, given a polygon, returns the set of pixels that are completely
or mostly within the polygon (Pixels on the boundary are included in the result onl\ if
they are mostly within the polygon) Function PIXELS_TO_ACRES uses the unit of
area covered by a pixel to convert from a pixel count to acres

The goal of the last part of the example is to overlay the land classification information
with "boundary files" (giving ownership information in this case) to obtain acreages of land
classes per region. This processing can be done in PROBE in five steps.

Select an image: There are several criteria that might influence the selection of an
image The most important is the area covered by the image After selecting images that
cover the area of the study, further selection can be based on other attributes To locate
images in the right area, the following steps can be used

1 Do a spatial join between the COVERAGE function of the set of images, and
the AREA function of the LAND-DIVISION entity representing the study
area, to locate the images overlapping the study area

2. Select one image based on other attributes and create a new ED-function storing
the needed information, STUDY.JMAGE(PIXEL) -> CLASS_VALUE.

Get the relevant ownership information: Obtain the owned-parcel polygons, and do
a spatial join with the study area's polygon to find the regions covering the study area.

Convert to common representation: Convert the owned-parcel polygons to raster for
mat using the RASTERIZE function and produce a new ED-function
PIXEL_OWNER(OWNER) - set of PIXEL

Do the overlay: Each pixel is related to a region through the PIXEL_OWNER func
tion, and has a class, as indicated by the STUDY_IMAGE function. These functions
can be composed, yielding OVERLAY(PIXEL) -> (OWNER,CLASS_VALUE)

Compute acreage of class per district: PROBE provides general-purpose aggregation
functions, such as sums, maxima, minima, and counts In this example, aggregation can be
used to count the number of pixels of each class in each region
USAGE(OWNER.CLASS) - count Fmalh._the PIXEL_TO_ACRES function
can be applied to USAGE to convert the count of pixels to area, measured in acres

323

CURRENT WORK
Work related to PROBE is ongoing in a number of areas, some of them mentioned in pre
vious sections A breadboard implementation of PDM and its algebra, and of some query
processing algorithms, is under way. The breadboard will be tested against a number of
example applications (one of them a geographic application). This involves the definition
and implementation of a number of specific entity types incorporating spatial semantics
(Manola and Orenstem 1986).

ACKNOWLEDGEMENTS
We express our thanks to Alex Buchmann, Upen Chakravarthy, Mark Dewitt, David Gol-
dhirsch, Sandra Heiler, and Arnie Rosenthal for their contributions to the development of
PROBE.

REFERENCES

Abel. D J and Smith, .1 L 1983. "A data structure and algorithm based on a linear key
for a rectangle retrieval problem, Computer Vision, Graphics and Image Processing 27(1)

Claire, R W and Guptill, S.C 1982, "Spatial Operators for Selected Data Structures".
Proc. Fifth Intl Symp. on Computer-Assisted Cartography, ACSM

Dayal, U. et al. 1985, "PROBE - A Research Project in Knowledge-Oriented Database
Systems: Preliminary Analysis", Technical Report CCA-85-03, Computer Corporation of
America.

Dayal, U. and Smith, J.M 1986, "PROBE A Knowledge-Oriented Database Manage
ment System", in M L. Brodie and J. Mylopoulos (eds). On Knowledge Base Management
Systems Integrating Artificial Intelligence and Database Technologies, New York,
Springer-Verlag.

Dittnch, K and Dayal, U 1986 (eds), Proc Intl Workshop on Ob]ect-Oriented Database
Systems, Washington, IEEE Computer Society Press

Gargantim, I 1982, "An effective way to represent quadtrees", Comm ACM, 25(12)

Lochovsky, F. 1985 (ed), Database Engineering, Vol. 8, No 4, Special Issue on Object-
Oriented Systems, IEEE.

Lorie, R A. 1977, "Physical Integrity in a large segmented database", ACM Trans on
Database Systems, 2(1), 91-104

Manola, F A and Orenstem. J 1986. "Toward a General Spatial Data Model for an
Object-Oriented DBMS". Proc L'lth lull Conf Very Large Data Bases, IEEE

Manola, F.A. and Dayal, U 1986, "PDM An Object-Oriented Data Model", m (Dittnch
and Dayal 1986)

Mark, D M and Lauzon, J P. 1985, "Approaches for quadtree-based geographic informa
tion systems at continental or global scales", Proc Seventh Intl Symp. on Computer-
Assisted Cartography, ACSM.

\lorehouse. S 198"i, "\RC,'I\I7 O _ A Geo-Relational Model for Spatial Information".
Proc Seventh Intl Symp on Coninutf.r- Assisted Cartography, ACSM

Norns-Sherborn. A and Milne \\ ,1 1986. "A Practical Approach to Data Modelling in
Spatial Applications", Software—Practice and Experience, Vol 16(10). 893-913, (October
1986)

324

Orenstem, J.A. 1984, "A Class of Data Structures for Associative Searching", Proc. ACM
SIGACT/SIGMOD Symp. on Principles of Database Systems, New York, ACM.

Orenstem, Jack 1986, "Spatial Query Processing in an Object-Oriented Database System",
Proc 1986 ACM-SIGMOD Intl Conf on Management of Data, New York, ACM

Orenstem, J and Manola, F. 1986, "Spatial Data Modeling and Query Processing in
PROBE", Technical Report CCA-86-05, Computer Corporation of America

Requicha, A. 1980, "Representations for Rigid Solids Theory, Methods, and Systems",
Computing Surveys, 12(2), 437-464 (December 1980)

Rosenthal, A. et al 1986, "A DBMS Approach to Recursion". Proc 1986 ACM-SIGMOD
Intl Conf on Management of Data New York. ACM

s

RESULT

———————— *

<* —— ——— ——

Database
System:

nested loop
algorithms

——— >

— &•

Spatial
object class

distance(x, y)
<d?

Data

Invocation

Figure 1.

S

CANDIDATES

RESULT

Figure 2.

—————— *>

<* ——————
—————— »>

4 ——————

Database
System.

Geometry
Filter

Scan&
Test

—— >•

—— *>

——— ̂ Date
«^^^- Inv

ELEMENT
object class

Spatial
object class

distance(x, y)
<d?

3

Dcation

325

