
GEOGRAPHIC INFORMATION PROCESSING
USING

A SQL-BASED QUERY LANGUAGE

Kevin J. Ingram
William W. Phillips
Kork Systems, Inc.

6 State Street
Bangor, Maine 04401

ABSTRACT

The utility of a Land Records or Natural Resource infor
mation system is greatly enriched if its geographic (or
map-based component) and associated attribute data com
ponents can be integrated. Differences in how these two
classes of data are now processed, in particular, the
lack of a common query language, have impeded this
integration. Kork Systems' new Geographic Information
System (KGIS) combines separate geographic and attribute
data bases into a single, integrated system. Geographic
data (polygons, lines and points) are maintained in a
fully-intersected topologic data structure with direct
links to their associated attributes. The query language
used in KGIS is based on the Structured Query Language
(SQL). Several important additions were made to SQL to
incorporate spatial concepts into the query language,
including location, area, length, proximity and geogra
phic context. These additions enable the user to form
rapid, on-line queries about complex spatial relation
ships among the data.

INTRODUCTION

The utility of a Land Records or Natural Resource
information system is greatly enriched if the spatial
and non-spatial attribute components associated with
geographic features can be integrated. Differences in
how these two classes of data are now processed, in par
ticular, the lack of a common query language, have
impeded this integration. A query language is grounded
in the data model on which it is based. In discussing
the query language developed for Kork Systems' new Geo
graphic Information System (KGIS), it is necessary to

326

understand the data model on which KGIS is built. The
remainder of this paper comprises a review of the data
models available to a Geographic Information System
(GIS) developer, a short overview of the data model used
in KGIS and finally, a description of the query language
used in KGIS.

DATA MODELS FOR GEOGRAPHIC FEATURES

The continuing development of GIS technology has invol
ved two concurrent trends: 1) increasing sophistication
of data models for both the spatial and non-spatial
(attribute) information about geographic features, and
2) strengthening links between the spatial and non-
spatial attribute portions of the information.

Data models for non-spatial attribute information have
progressed from special purpose files designed to be
accessed by specific application programs, through the
hierarchical and network data models used in the first
generalized data base management systems (DBMS), to the
relational model which has emerged as a powerful and
flexible structure for representing attribute informa
tion in tabular form.

The special characteristics of spatial data (Peuquet,
1984) have presented a challenge to GIS developers in
their search for suitable data models. Early geographic
data bases consisted of a catalog of files, segregated
by map sheet and data layer, containing either vector or
tessellated data.

Vector data usually consisted of polygon-digitized
("double-digitized") or spaghetti-digitized segments.
Dueker (1985) has described the shortcomings of this
data model. The topologic model, an improvement on ear
lier vector structures, made it possible to relate one
feature to other features within a data layer. Relating
data between layers, however, required an expensive
polygon overlay operation.

Tessellated data, either grid-cell or raster encoded,
provide for simpler computations at the cost of increas
ed data volume and lower positional precision. The
application of hierarchical tessellated data structures
(quadtrees and other variants) to geographic data bases
reduced the data volume burden and made spatial searches
efficient.

The success of the relational model for managing non-
geographic data has led to attempts (Waugh and Healey,
1985) to apply it to geographic data as well. This
approach has the strength of storing the data in a
sophisticated DBMS and the flexibility of the relational
model. Since all information is represented by a single
data model, this approach should provide a strong link
between the spatial and non-spatial attribute components

327

of the geographic information. It generally suffers by
forcing the user to manipulate the information about
geographic features at a very low-level (Abel and Smith,
1985).

The more recent development of the object-oriented data
model has provided a powerful tool for managing geogra
phic data, including model constructs such as
classification, generalization and aggregation. One
system (Frank, 1986) based on an object-oriented data
model, PANDA, is implemented on a network DBMS and pro
vides spatial access to geographic features through a
modified quadtree structure for data storage. The
object-oriented approach allows considerable knowledge
about the behaviour of objects to be embedded in the
system. However, this inherently limits the system's
flexibility with regard to changes in the schema since
any modification necessitates re-programming.

In summary, there does not yet appear to be a single
data model for geographic features which is superior in
every aspect to all other data models. As a result, the
link between the spatial and non-spatial attribute com
ponents of geographic features has usually been either
weak or non-existent. This shortcoming can be reduced by
using a hybrid data model (Morehouse, 1985). However, if
the hybrid nature of the data model is visible exter
nally, then the user will be forced to work in one mode
or the other. This tends to segregate specific capabili
ties by mode which reduces the systems overall
flexibility.

KGIS OVERVIEW

In designing KGIS, we defined three functional require
ments. First, the system should handle spatial and
non-spatial attributes in a single context to give the
user the maximum amount of flexibility in formulating
queries. Second, it should have "the ability to relate
geographic features in one layer, e.g. soils, with those
in other layers, e.g. bedrock geology or roads. Third,
the system should not impose a fragmentation of the spa
tial data upon the user, but should maintain them as a
seamless whole while permitting the user to define an
arbitrary subset. To accomplish these requirements, we
decided to distinguish between the external and internal
views of the data, designing each view to support a dif
ferent data model.

The external view supports the relational model, giving
the user access to all information in the data base
including both spatial and non-spatial attributes of
geographic features. The user views geographic features
at a high level, manipulating them in the same context
as other information. Each thematic layer of geographic
features is represented in a separate relational table.

328

Internally, KGIS is implemented on a hybrid data model
(Keating et al, forthcoming). Non-spatial attribute data
are maintained in a relational DBMS. The relational
model provides the necessary flexibility in the schema.
Spatial data are maintained in an object-oriented DBMS,
PANDA. The object-oriented approach provides the high-
level view of geographic features by hiding inner com
plexity of the data structure in the lower levels of the
system. The data model for spatial attributes contains
elements of several other data models as well. The
schema defined for the spatial data stores them in a
fully intersected topologic data structure, an improve
ment on the layer-by-layer topologic model. This schema
permits a geographic feature in one layer to be related
to features in other layers as easily as in the same
layer. Finally, the PANDA DBMS provides a hierarchical
tessellated data structure for storing and accessing
spatial data. Therefore while no artificial fragment
ation of the spatial data base is necessary, this
capability enables rapid spatial searches of any arbi
trary user-defined subset of the data base.

KGIS QUERY LANGUAGE FEATURES

SQL (Chamberlin et al., 1976) will soon be an official
standard, query language for relational DBMSs. For this
reason, it was chosen as the basis of the KGIS query
language. However, SQL suffers from the same shortcom
ings as other commercial DBMS query languages when
applied to geographic data management (Abel and Smith,
1985). Missing but necessary facilities include 1) a
high level view of geographic features, 2) support for
the graphic display of geographic features and 3) an
ability to express spatial relationships as selection
criteria. In addition, an adequate geographic query
language (Frank, 1982) must provide support for 4) geo
graphic context specification, 5) graphical context
specification and 6) graphical input.

To provide these facilities, we have made several addi
tions to SQL. Since maintaining compatability with the
SQL standard is a priority, we have retained the overall
syntax whenever possible, adding extensions as new com
mands or as functions for use with existing commands.
The resulting language provides facilities in all of the
areas described above.

High Level View Of Geographic Features

Geographic features are distinguished from other data
base entities, which have only non-spatial attributes,
by having spatial attributes and spatial relationships
to other geographic features as well. By treating them
as objects, the KGIS query language provides a high
level view of geographic features, relieving the user
from manipulating the complex internal representation of
geographic information directly. Geographic features

329

appear as entire entities, such as 'Parcel 123' or
'Route 1', which have both spatial and non-spatial
attributes.

GrapMc Display Of Geographic Features

The graphic display of geographic features involves two
issues: 1) specifying the information to be displayed
and 2) specifying the format in which to display it.

All geographic features have associated positional
information which, when taken in its entirety, can be
expressed graphically as a map. The map for a geographic
feature, therefore, may be treated as one of its spatial
attributes. To view the map of a feature, the user
simply retrieves it like any other attribute. The fol
lowing query

SELECT MAP FROM PARCELS WHERE VALUATION > 100000;

displays, on the graphics screen, a map of each parcel
whose value is greater than $100000.

On an ordinary paper map, the legend describes graphic
symbology used to represent the mapped information. Ana
logously in KG1S, a dynamic legend describes the
symbology used to render the information displayed in
map form on the graphics screen. This legend provides a
mechanism for specifying how query results are graphi
cally displayed. A default display format is maintained
for each layer, e.g. parcels or soils, in the data base.
This format provides a complete description of how a
feature is to be displayed and it is referred to when
ever a query involving graphics is executed. The legend
is dynamic because, unlike a paper map, information can
be added to or removed from the display and as this hap
pens, the descriptions in the legend change
correspondingly.

Spatial .Criteria For Data Retrieval

A geographic feature differs from other data base enti-
ties in having spatial attributes such as size, shape
and location, which depend only on the individual fea
ture, and spatial relationships to other geographic
features, such as proximity, adjacency and direction.

In addition to MAP, spatial attributes that are cur
rently supported include AREA, PERIMETER and LENGTH.
They appear to the user to be stored explicitly in the
data base. In actuality, because of their dependency on
a feature's positional information, these attributes are
computed when they are requested. They are treated in
the same syntactic context as other attributes. They may
be retrieved along with a list of other attributes or
used in selection constraints as the following example
shows:

SELECT ID,MAP,PERIMETER,OWNERNAME FROM PARCELS WHERE

330

AREA > 10;

Spatial relationships between geographic features are
much less tractable, often involving fuzzy or applica
tion-dependent definitions. Peuquet (1985) has stated
that all spatial relationships appear to be derivable
from three primitives: boolean set operations, distance
and direction. Of these, direction is the least useful
because a model for direction, free from dependency on
human interpretation, has not been developed. As a
result, we have focused our efforts to date on spatial
relationships that can be derived from boolean opera
tions and distance. Each of these imply, in a sense, a
relational join operation, i.e. a spatial join. These
spatial relationships relate two separate groups of fea
tures, or themes, over a shared domain, namely location
is space. In certain cases the join criteria could be
made explicit in terms of shared topology. We decided
that this would overburden the user and opted instead to
implement spatial relationships as high-level functions
to better express a users intuitive understanding. All
the spatial relationships we currently support fall into
two classes: those that act like attributes and those
that act like predicates. Attribute-like relationships
include DISTANCE and OVERLAP. Predicate-like relation
ships include OVERLAY and ADJACENT.

DISTANCE is implemented as a scalar function of two
themes. It expresses the minimum distance from a feature
in the first theme to one in the second. It can be used
either as an attribute or a selection criteria as fol
lows:

SELECT class, depth, map, distance (soils, roads)
FROM soils,roads
WHERE distance (soils, roads) < 500:meters and

roads.surface = 'Paved';

This query returns several soil attributes, including
the map and distance to the nearest road, for soils
which occur within 500 meters of a paved road.

OVERLAY is a boolean function of two themes. Stated as a
predicate, it expresses the spatial intersection of a
feature in the first theme with one in the second, e.g.
polygon-polygon, line-line, point-in-polygon, line-in-
polygon, etc. It is used as a selection criteria as fol
lows :

SELECT class, cec, permeability, soils.map
FROM soils, parcels -
WHERE valuation > 60000 and overlay(soils, parcels);

This query returns information, including graphics,
about soils which occur on parcels valued above $60,000
dollars. The topologic data structures, used in KGIS to
represent geographic features, are built at the time the
data are added to the data base and alleviate the need
to perform polygon intersection computations at query

331

time. Instead, the OVERLAY operation is reduced to iden
tifying shared topology.

Often, with queries involving the OVERLAY relationship,
information relative to the overlapping portion is re
quired. Queries of this kind can be expressed using the
OVERLAP modifier. OVERLAP is a scalar function of spa
tial attributes, used in a query involving the OVERLAY
relationship to express attributes of the overlap. For
example,

SELECT r.id, overlap(r.length), overlap(r.map)
FROM townships t, roads r
WHERE t.name = 'Hampden' and maintenance - 'State'

and overlay (roads,townships);

returns the id, surfacing material, length and map of
State-maintained roads that pass through the township of
Hampden. The OVERLAP function returns only that portion
of the length and map which falls within Hampden.

ADJACENT is a boolean function of two themes. Stated as
a predicate, it expresses whether the boundaries of two
geographic features share a topologic 1-cell, referred
to in KGIS as an edge. This relationship can exist
between two polygons or between a line and a polygon. It
is used as a selection criteria as follows:

SELECT id, address, valuation
FROM parcels,roads
WHERE adjacent(roads, parcels) and

roads.id = 'Elm Street';

This query returns information about parcels which are
adjacent to Elm Street. As with the OVERLAY function,
execution of the ADJACENT function consists of identify
ing shared topology between pairs of features.

Geographic Context

The locational data for geographic features is
maintained in a single, seamless data base, not parti
tioned into pre-defined map sheets or their equivalent.
If a user does not wish to query against the full geo
graphic extent of the data base, a geographic context
may be established. In keeping with the relational
model, we refer to this geographic context as a GEOVIEW.
A GEOVIEW effectively partitions the data base spatially
so that only those geographic features that fall within
the specified area are considered for retrieval. A GEO
VIEW may use a geographic feature or an arbitrary ground
window. A GEOVIEW is specified using a SET command as
follows:

SET geoview WHERE counties.id = 'PENOBSCOT'
or

SET geoview WHERE lowerleft = utm(500000,3894000) and
upperright = utm(520000,3900000)

332

Once established, a GEOVIEW remains in effect for subse
quent queries until changed or reset.

Gra£hical._Context

To visually interpret query results displayed on a
graphics screen, it is often necessary to supplement
those results with background information. A base map
provides a graphical context from which to interpret
thematic information. KGIS provides facilities for de
fining a base map, displayed on the graphics screen,
which persists from query to query until modified or
removed. A base map is defined with the DISPLAY command
as follows:

DISPLAY roads, parcels, lakes, streams

This command displays a map of all roads, parcels, lakes
and streams using the default display formats within the
currently defined GEOVIEW. A base map can be modified or
reset using the REMOVE command:

REMOVE parcels
or

REMOVE *

These commands remove just the parcels or the entire
base map, respectively. The contents of the base map are
recorded in the dynamic legend along with other graphic
query results.

Graphd.ca]L__I.nput

A special graphical input facility is available for
specifying a spatial constraint. The user may specify a
feature by pointing at a location on the graphic screen
with a pointing device, such as a mouse. The feature
specified need not be displayed at the time. This facil
ity is employed as follows:

SELECT * FROM parcels WHERE location = mouse;

When this query is submitted, the graphic cursor appears
on the graphics screen. The user may move the cursor,
via the mouse, to a desired location on the screen and
indicate a selection by pressing the left mouse button.
The user can repeat this until all the selections have
been made. The process is terminated by pressing the
right mouse button. The query processing then proceeds
using the indicated set of features.

CONCLUSIONS

I have presented here the basis of a query language for
managing geographic information. The language treats
spatial and non-spatial attributes in a single context,
providing a high-level relational view of geographic

333

features. Facilities are provided for the graphical dis
play and input of data, the specification of both
graphical and geographical context and the use of spa
tial attributes and relationships as selection
constraints. No claims of completeness are made, how
ever. The language currently provides facilities for
some of the more common spatial relationships. As faci
lities for other relationships are added, the language
will continue to evolve.

REFERENCES

Abel, D.J. and Smith, J.L.,1985, A RELATIONAL GIS DATA
BASE ACCOMMODATING INDEPENDENT PARTITIONINGS OF THE
REGION, International Symposium on Spatial Data Han
dling, Seattle, WA, pp 213-224.

Chamberlain, D.D., M.M. Astrahan, K.P. Eswaran, P.P.
Griffiths, R.A. Lorie, J.W. Mehl, P. Reisner and B.W.
Wade, 1976. "SEQUEL 2: A Unified Approach to Data Def
inition, Manipulation, and Control", IBM Journal of
Research and Development, 20(6), pp. 560-575.

Dueker, K.J., 1985, GEOGRAPHIC INFORMATION SYSTEMS:
TOWARD A GEO-RELATIONAL STRUCTURE, Auto-Carto 7 Proceed
ings, Washington,D.C., pp 172-175

Frank, A.F., 1982, MAPQUERY: DATA BASE QUERY LANGUAGE
FOR RETRIEVAL OF GEOMETRIC DATA AND THEIR GRAPHICAL REP
RESENTATION, SIGGRAPH Conference, Boston, MA, Computer
Graphics Vol. 16, No. 3, p 199.

_______J__, 1984, REQUIREMENTS FOR DATABASE SYSTEMS
SUITABLE TO MANAGE LARGE SPATIAL DATABASES, Interna
tional Symposium on Spatial Data Handling Proceedings,
Zurich, Switzerland

__________, 1986, PANDA: AN OBJECT-ORIENTED PASCAL NET
WORK DATABASE MANAGEMENT SYSTEM, Report No. 57,
Department of Civil Engineering, University of Maine,
103 Boardman Hall, Orono, Maine 04469

Keating, T., Phillips, W. and Ingram, K.J., in press
1987, AN INTEGERATED TOPOLOGIC DATABASE DESIGN FOR GEO
GRAPHIC INFORMATION SYSTEMS, Photogrammetric Engineering
and Remote Sensing

Morehouse, S., 1985, ARC/INFO: A GEO-RELATIONAL MODEL
FOR SPATIAL INFORMATION, Auto-Carto 7 Proceedings, Wash
ington,D.C., pp 388-397

Peuquet, D.J., 1984, DATA STRUCTURES FOR A
KNOWLEDGE-BASED GEOGRAPHIC INFORMATION SYSTEM, Proceed
ings, First International Symposium on Spatial Data
Handling, Zurich, Switzerland, Geographical Institute,
University of Zurich, pp 372-391

334

___________, 1985, THE USE OF SPATIAL RELATIONSHIPS TO
AID DATABASE RETRIEVAL, International Symposium on Spa
tial Data Handling, Seattle, WA, pp 459-471.

Waugh, T.C. and Healey, R.G., 1985, THE GEOVIEW DESIGN:
A RELATIONAL DATABASE APPROACH TO GEOGRAPHICAL DATA HAN
DLING, International Symposium on Spatial Data
Handling, Seattle, WA, pp 193-212

335

