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ABSTRACT

The utility of a Land Records or Natural Resource infor 
mation system is greatly enriched if its geographic (or 
map-based component) and associated attribute data com 
ponents can be integrated. Differences in how these two 
classes of data are now processed, in particular, the 
lack of a common query language, have impeded this 
integration. Kork Systems' new Geographic Information 
System (KGIS) combines separate geographic and attribute 
data bases into a single, integrated system. Geographic 
data (polygons, lines and points) are maintained in a 
fully-intersected topologic data structure with direct 
links to their associated attributes. The query language 
used in KGIS is based on the Structured Query Language 
(SQL). Several important additions were made to SQL to 
incorporate spatial concepts into the query language, 
including location, area, length, proximity and geogra 
phic context. These additions enable the user to form 
rapid, on-line queries about complex spatial relation 
ships among the data.

INTRODUCTION

The utility of a Land Records or Natural Resource 
information system is greatly enriched if the spatial 
and non-spatial attribute components associated with 
geographic features can be integrated. Differences in 
how these two classes of data are now processed, in par 
ticular, the lack of a common query language, have 
impeded this integration. A query language is grounded 
in the data model on which it is based. In discussing 
the query language developed for Kork Systems' new Geo 
graphic Information System (KGIS), it is necessary to
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understand the data model on which KGIS is built. The 
remainder of this paper comprises a review of the data 
models available to a Geographic Information System 
(GIS) developer, a short overview of the data model used 
in KGIS and finally, a description of the query language 
used in KGIS.

DATA MODELS FOR GEOGRAPHIC FEATURES

The continuing development of GIS technology has invol 
ved two concurrent trends: 1) increasing sophistication 
of data models for both the spatial and non-spatial 
(attribute) information about geographic features, and 
2) strengthening links between the spatial and non- 
spatial attribute portions of the information.

Data models for non-spatial attribute information have 
progressed from special purpose files designed to be 
accessed by specific application programs, through the 
hierarchical and network data models used in the first 
generalized data base management systems (DBMS), to the 
relational model which has emerged as a powerful and 
flexible structure for representing attribute informa 
tion in tabular form.

The special characteristics of spatial data (Peuquet,
1984) have presented a challenge to GIS developers in 
their search for suitable data models. Early geographic 
data bases consisted of a catalog of files, segregated 
by map sheet and data layer, containing either vector or 
tessellated data.

Vector data usually consisted of polygon-digitized 
("double-digitized") or spaghetti-digitized segments. 
Dueker (1985) has described the shortcomings of this 
data model. The topologic model, an improvement on ear 
lier vector structures, made it possible to relate one 
feature to other features within a data layer. Relating 
data between layers, however, required an expensive 
polygon overlay operation.

Tessellated data, either grid-cell or raster encoded, 
provide for simpler computations at the cost of increas 
ed data volume and lower positional precision. The 
application of hierarchical tessellated data structures 
(quadtrees and other variants) to geographic data bases 
reduced the data volume burden and made spatial searches 
efficient.

The success of the relational model for managing non- 
geographic data has led to attempts (Waugh and Healey,
1985) to apply it to geographic data as well. This 
approach has the strength of storing the data in a 
sophisticated DBMS and the flexibility of the relational 
model. Since all information is represented by a single 
data model, this approach should provide a strong link 
between the spatial and non-spatial attribute components
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of the geographic information. It generally suffers by 
forcing the user to manipulate the information about 
geographic features at a very low-level (Abel and Smith, 
1985).

The more recent development of the object-oriented data 
model has provided a powerful tool for managing geogra 
phic data, including model constructs such as 
classification, generalization and aggregation. One 
system (Frank, 1986) based on an object-oriented data 
model, PANDA, is implemented on a network DBMS and pro 
vides spatial access to geographic features through a 
modified quadtree structure for data storage. The 
object-oriented approach allows considerable knowledge 
about the behaviour of objects to be embedded in the 
system. However, this inherently limits the system's 
flexibility with regard to changes in the schema since 
any modification necessitates re-programming.

In summary, there does not yet appear to be a single 
data model for geographic features which is superior in 
every aspect to all other data models. As a result, the 
link between the spatial and non-spatial attribute com 
ponents of geographic features has usually been either 
weak or non-existent. This shortcoming can be reduced by 
using a hybrid data model (Morehouse, 1985). However, if 
the hybrid nature of the data model is visible exter 
nally, then the user will be forced to work in one mode 
or the other. This tends to segregate specific capabili 
ties by mode which reduces the systems overall 
flexibility.

KGIS OVERVIEW

In designing KGIS, we defined three functional require 
ments. First, the system should handle spatial and 
non-spatial attributes in a single context to give the 
user the maximum amount of flexibility in formulating 
queries. Second, it should have "the ability to relate 
geographic features in one layer, e.g. soils, with those 
in other layers, e.g. bedrock geology or roads. Third, 
the system should not impose a fragmentation of the spa 
tial data upon the user, but should maintain them as a 
seamless whole while permitting the user to define an 
arbitrary subset. To accomplish these requirements, we 
decided to distinguish between the external and internal 
views of the data, designing each view to support a dif 
ferent data model.

The external view supports the relational model, giving 
the user access to all information in the data base 
including both spatial and non-spatial attributes of 
geographic features. The user views geographic features 
at a high level, manipulating them in the same context 
as other information. Each thematic layer of geographic 
features is represented in a separate relational table.
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Internally, KGIS is implemented on a hybrid data model 
(Keating et al, forthcoming). Non-spatial attribute data 
are maintained in a relational DBMS. The relational 
model provides the necessary flexibility in the schema. 
Spatial data are maintained in an object-oriented DBMS, 
PANDA. The object-oriented approach provides the high- 
level view of geographic features by hiding inner com 
plexity of the data structure in the lower levels of the 
system. The data model for spatial attributes contains 
elements of several other data models as well. The 
schema defined for the spatial data stores them in a 
fully intersected topologic data structure, an improve 
ment on the layer-by-layer topologic model. This schema 
permits a geographic feature in one layer to be related 
to features in other layers as easily as in the same 
layer. Finally, the PANDA DBMS provides a hierarchical 
tessellated data structure for storing and accessing 
spatial data. Therefore while no artificial fragment 
ation of the spatial data base is necessary, this 
capability enables rapid spatial searches of any arbi 
trary user-defined subset of the data base.

KGIS QUERY LANGUAGE FEATURES

SQL (Chamberlin et al., 1976) will soon be an official 
standard, query language for relational DBMSs. For this 
reason, it was chosen as the basis of the KGIS query 
language. However, SQL suffers from the same shortcom 
ings as other commercial DBMS query languages when 
applied to geographic data management (Abel and Smith, 
1985). Missing but necessary facilities include 1) a 
high level view of geographic features, 2) support for 
the graphic display of geographic features and 3) an 
ability to express spatial relationships as selection 
criteria. In addition, an adequate geographic query 
language (Frank, 1982) must provide support for 4) geo 
graphic context specification, 5) graphical context 
specification and 6) graphical input.

To provide these facilities, we have made several addi 
tions to SQL. Since maintaining compatability with the 
SQL standard is a priority, we have retained the overall 
syntax whenever possible, adding extensions as new com 
mands or as functions for use with existing commands. 
The resulting language provides facilities in all of the 
areas described above.

High Level View Of Geographic Features

Geographic features are distinguished from other data 
base entities, which have only non-spatial attributes, 
by having spatial attributes and spatial relationships 
to other geographic features as well. By treating them 
as objects, the KGIS query language provides a high 
level view of geographic features, relieving the user 
from manipulating the complex internal representation of 
geographic information directly. Geographic features
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appear as entire entities, such as 'Parcel 123' or 
'Route 1', which have both spatial and non-spatial 
attributes.

GrapMc Display Of Geographic Features

The graphic display of geographic features involves two 
issues: 1) specifying the information to be displayed 
and 2) specifying the format in which to display it.

All geographic features have associated positional 
information which, when taken in its entirety, can be 
expressed graphically as a map. The map for a geographic 
feature, therefore, may be treated as one of its spatial 
attributes. To view the map of a feature, the user 
simply retrieves it like any other attribute. The fol 
lowing query

SELECT MAP FROM PARCELS WHERE VALUATION > 100000;

displays, on the graphics screen, a map of each parcel 
whose value is greater than $100000.

On an ordinary paper map, the legend describes graphic 
symbology used to represent the mapped information. Ana 
logously in KG1S, a dynamic legend describes the 
symbology used to render the information displayed in 
map form on the graphics screen. This legend provides a 
mechanism for specifying how query results are graphi 
cally displayed. A default display format is maintained 
for each layer, e.g. parcels or soils, in the data base. 
This format provides a complete description of how a 
feature is to be displayed and it is referred to when 
ever a query involving graphics is executed. The legend 
is dynamic because, unlike a paper map, information can 
be added to or removed from the display and as this hap 
pens, the descriptions in the legend change 
correspondingly.

Spatial .Criteria For Data Retrieval

A geographic feature differs from other data base enti- 
ties in having spatial attributes such as size, shape 
and location, which depend only on the individual fea 
ture, and spatial relationships to other geographic 
features, such as proximity, adjacency and direction.

In addition to MAP, spatial attributes that are cur 
rently supported include AREA, PERIMETER and LENGTH. 
They appear to the user to be stored explicitly in the 
data base. In actuality, because of their dependency on 
a feature's positional information, these attributes are 
computed when they are requested. They are treated in 
the same syntactic context as other attributes. They may 
be retrieved along with a list of other attributes or 
used in selection constraints as the following example 
shows:

SELECT ID,MAP,PERIMETER,OWNERNAME FROM PARCELS WHERE
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AREA > 10;

Spatial relationships between geographic features are 
much less tractable, often involving fuzzy or applica 
tion-dependent definitions. Peuquet (1985) has stated 
that all spatial relationships appear to be derivable 
from three primitives: boolean set operations, distance 
and direction. Of these, direction is the least useful 
because a model for direction, free from dependency on 
human interpretation, has not been developed. As a 
result, we have focused our efforts to date on spatial 
relationships that can be derived from boolean opera 
tions and distance. Each of these imply, in a sense, a 
relational join operation, i.e. a spatial join. These 
spatial relationships relate two separate groups of fea 
tures, or themes, over a shared domain, namely location 
is space. In certain cases the join criteria could be 
made explicit in terms of shared topology. We decided 
that this would overburden the user and opted instead to 
implement spatial relationships as high-level functions 
to better express a users intuitive understanding. All 
the spatial relationships we currently support fall into 
two classes: those that act like attributes and those 
that act like predicates. Attribute-like relationships 
include DISTANCE and OVERLAP. Predicate-like relation 
ships include OVERLAY and ADJACENT.

DISTANCE is implemented as a scalar function of two 
themes. It expresses the minimum distance from a feature 
in the first theme to one in the second. It can be used 
either as an attribute or a selection criteria as fol 
lows:

SELECT class, depth, map, distance ( soils, roads ) 
FROM soils,roads
WHERE distance ( soils, roads ) < 500:meters and 

roads.surface = 'Paved';

This query returns several soil attributes, including 
the map and distance to the nearest road, for soils 
which occur within 500 meters of a paved road.

OVERLAY is a boolean function of two themes. Stated as a 
predicate, it expresses the spatial intersection of a 
feature in the first theme with one in the second, e.g. 
polygon-polygon, line-line, point-in-polygon, line-in- 
polygon, etc. It is used as a selection criteria as fol 
lows :

SELECT class, cec, permeability, soils.map 
FROM soils, parcels - 
WHERE valuation > 60000 and overlay(soils, parcels);

This query returns information, including graphics, 
about soils which occur on parcels valued above $60,000 
dollars. The topologic data structures, used in KGIS to 
represent geographic features, are built at the time the 
data are added to the data base and alleviate the need 
to perform polygon intersection computations at query
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time. Instead, the OVERLAY operation is reduced to iden 
tifying shared topology.

Often, with queries involving the OVERLAY relationship, 
information relative to the overlapping portion is re 
quired. Queries of this kind can be expressed using the 
OVERLAP modifier. OVERLAP is a scalar function of spa 
tial attributes, used in a query involving the OVERLAY 
relationship to express attributes of the overlap. For 
example,

SELECT r.id, overlap(r.length), overlap(r.map) 
FROM townships t, roads r
WHERE t.name = 'Hampden' and maintenance - 'State' 

and overlay (roads,townships);

returns the id, surfacing material, length and map of 
State-maintained roads that pass through the township of 
Hampden. The OVERLAP function returns only that portion 
of the length and map which falls within Hampden.

ADJACENT is a boolean function of two themes. Stated as 
a predicate, it expresses whether the boundaries of two 
geographic features share a topologic 1-cell, referred 
to in KGIS as an edge. This relationship can exist 
between two polygons or between a line and a polygon. It 
is used as a selection criteria as follows:

SELECT id, address, valuation 
FROM parcels,roads
WHERE adjacent( roads, parcels) and 

roads.id = 'Elm Street';

This query returns information about parcels which are 
adjacent to Elm Street. As with the OVERLAY function, 
execution of the ADJACENT function consists of identify 
ing shared topology between pairs of features.

Geographic Context

The locational data for geographic features is 
maintained in a single, seamless data base, not parti 
tioned into pre-defined map sheets or their equivalent. 
If a user does not wish to query against the full geo 
graphic extent of the data base, a geographic context 
may be established. In keeping with the relational 
model, we refer to this geographic context as a GEOVIEW. 
A GEOVIEW effectively partitions the data base spatially 
so that only those geographic features that fall within 
the specified area are considered for retrieval. A GEO 
VIEW may use a geographic feature or an arbitrary ground 
window. A GEOVIEW is specified using a SET command as 
follows:

SET geoview WHERE counties.id = 'PENOBSCOT'
or

SET geoview WHERE lowerleft = utm(500000,3894000) and 
upperright = utm(520000,3900000)
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Once established, a GEOVIEW remains in effect for subse 
quent queries until changed or reset.

Gra£hical._Context

To visually interpret query results displayed on a 
graphics screen, it is often necessary to supplement 
those results with background information. A base map 
provides a graphical context from which to interpret 
thematic information. KGIS provides facilities for de 
fining a base map, displayed on the graphics screen, 
which persists from query to query until modified or 
removed. A base map is defined with the DISPLAY command 
as follows:

DISPLAY roads, parcels, lakes, streams

This command displays a map of all roads, parcels, lakes 
and streams using the default display formats within the 
currently defined GEOVIEW. A base map can be modified or 
reset using the REMOVE command:

REMOVE parcels
or 

REMOVE *

These commands remove just the parcels or the entire 
base map, respectively. The contents of the base map are 
recorded in the dynamic legend along with other graphic 
query results.

Graphd.ca]L__I.nput

A special graphical input facility is available for 
specifying a spatial constraint. The user may specify a 
feature by pointing at a location on the graphic screen 
with a pointing device, such as a mouse. The feature 
specified need not be displayed at the time. This facil 
ity is employed as follows:

SELECT * FROM parcels WHERE location = mouse;

When this query is submitted, the graphic cursor appears 
on the graphics screen. The user may move the cursor, 
via the mouse, to a desired location on the screen and 
indicate a selection by pressing the left mouse button. 
The user can repeat this until all the selections have 
been made. The process is terminated by pressing the 
right mouse button. The query processing then proceeds 
using the indicated set of features.

CONCLUSIONS

I have presented here the basis of a query language for 
managing geographic information. The language treats 
spatial and non-spatial attributes in a single context, 
providing a high-level relational view of geographic
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features. Facilities are provided for the graphical dis 
play and input of data, the specification of both 
graphical and geographical context and the use of spa 
tial attributes and relationships as selection 
constraints. No claims of completeness are made, how 
ever. The language currently provides facilities for 
some of the more common spatial relationships. As faci 
lities for other relationships are added, the language 
will continue to evolve.

REFERENCES

Abel, D.J. and Smith, J.L.,1985, A RELATIONAL GIS DATA 
BASE ACCOMMODATING INDEPENDENT PARTITIONINGS OF THE 
REGION, International Symposium on Spatial Data Han 
dling, Seattle, WA, pp 213-224.

Chamberlain, D.D., M.M. Astrahan, K.P. Eswaran, P.P. 
Griffiths, R.A. Lorie, J.W. Mehl, P. Reisner and B.W. 
Wade, 1976. "SEQUEL 2: A Unified Approach to Data Def 
inition, Manipulation, and Control", IBM Journal of 
Research and Development, 20(6), pp. 560-575.

Dueker, K.J., 1985, GEOGRAPHIC INFORMATION SYSTEMS: 
TOWARD A GEO-RELATIONAL STRUCTURE, Auto-Carto 7 Proceed 
ings, Washington,D.C., pp 172-175

Frank, A.F., 1982, MAPQUERY: DATA BASE QUERY LANGUAGE 
FOR RETRIEVAL OF GEOMETRIC DATA AND THEIR GRAPHICAL REP 
RESENTATION, SIGGRAPH Conference, Boston, MA, Computer 
Graphics Vol. 16, No. 3, p 199.

_______J__, 1984, REQUIREMENTS FOR DATABASE SYSTEMS 
SUITABLE TO MANAGE LARGE SPATIAL DATABASES, Interna 
tional Symposium on Spatial Data Handling Proceedings, 
Zurich, Switzerland

__________, 1986, PANDA: AN OBJECT-ORIENTED PASCAL NET 
WORK DATABASE MANAGEMENT SYSTEM, Report No. 57, 
Department of Civil Engineering, University of Maine, 
103 Boardman Hall, Orono, Maine 04469

Keating, T., Phillips, W. and Ingram, K.J., in press 
1987, AN INTEGERATED TOPOLOGIC DATABASE DESIGN FOR GEO 
GRAPHIC INFORMATION SYSTEMS, Photogrammetric Engineering 
and Remote Sensing

Morehouse, S., 1985, ARC/INFO: A GEO-RELATIONAL MODEL 
FOR SPATIAL INFORMATION, Auto-Carto 7 Proceedings, Wash 
ington,D.C., pp 388-397

Peuquet, D.J., 1984, DATA STRUCTURES FOR A 
KNOWLEDGE-BASED GEOGRAPHIC INFORMATION SYSTEM, Proceed 
ings, First International Symposium on Spatial Data 
Handling, Zurich, Switzerland, Geographical Institute, 
University of Zurich, pp 372-391

334



___________, 1985, THE USE OF SPATIAL RELATIONSHIPS TO 
AID DATABASE RETRIEVAL, International Symposium on Spa 
tial Data Handling, Seattle, WA, pp 459-471.

Waugh, T.C. and Healey, R.G., 1985, THE GEOVIEW DESIGN: 
A RELATIONAL DATABASE APPROACH TO GEOGRAPHICAL DATA HAN 
DLING, International Symposium on Spatial Data 
Handling, Seattle, WA, pp 193-212

335




