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ABSTRACT

This paper introduces a novel digital geopositioning model. It is 
based on computational geodesy in which direction cosines are used 
instead of the conventional -angular- ellipsoid normal representation, 
and eccentricity term expansions are replaced by iterative algorithms. 
The surface is partitioned by a spheroid equivalent of the Voronoi 
polygon network. The model affords seamless global coverage, easily 
attainable millimetric resolution, and data-density sensitive location 
indexing. Numerical representation of 0, 1 and 2 dimensional objects 
is in complete accordance with the unbounded, spheroidal nature of 
the data domain, free from any size, shape or location restriction. 
Efficient union and intersection evaluations extend the utility of the 
relational technique into the realm of geometronical systems with non- 
trivial spatial precision requirements. Digital modelling of orbital 
dynamics follows closely the numerical methodology used by terrestrial 
geometry. The HIPPARCHUS software package includes the transformations 
and utility functions required for efficient generation of transient 
graphics, and for the communication with systems based on conventional 
cartographic projections.

Fig. 1: HIPPARCHUS ellipsoid surface partitioning scheme 

INTRODUCTION

A numerical geopositioning model is an essential element of any system 
wherein a dimension of space enters into the semantics of the appli 
cation - and therefore into the software technique repertoire - in a 
fundamental way. It consists of location attribute data definitions
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and computational algorithms, which allow position sensitive storage 
and retrieval of data, and provide a basis for evaluation of spatial 
relationships. (The term "spatial relationship" is used in this paper 
to describe the formal statement of any practical spatial problem 
which deals with positions of real or abstract objects on - or close 
to - the Earth surface. Their nature can vary; examples might include 
geodetic position computations, course optimization for navigation in 
ice-infested waters or determination of the most probable location of 
objects remotely sensed from a platform in the near Space.)

If the location attributes of data elements in a computer system are 
used exclusively tor the generation of a small-scale analog map 
document, the demands made of a geopositioning model are few and 
simple. When the area of coverage is limited, and projection 
geometry, spatial resolution and partitioning of the data can be made 
directly compatible with same characteristics of all future required 
products, a single plane coordinate system is often employed. Such a 
system is usually based on one of the large-area conformal projections 
(e.g. Lambert, Gauss-Krueger, etc.), and provides adequate means to 
identify positions, partition the data, and construct a location 
index. The model may even allow limited spatial analysis.

However, with the increase of the area of coverage and the functional 
power of information systems, the nature of the problem changes 
considerably.

Precision requirements usually exceed the level of difference between 
planar coordinate relationships and the actual object-space geometry. 
In most cases, the generation of an analog map is reduced to a 
secondary objective. Location attributes are primarily used to 
support the evaluation of spatial relationships required by the 
application. Indeed, as the volatility and volume of data grows, it 
becomes increasingly common that a location-specific item enters a 
system, contributes to the evaluation of a large number of spatial 
relationships, and is ultimately discarded, without ever being 
presented in the graphical form.

Even in systems used primarily to automate the production of analog 
documents, there is often a need to accommodate many different 
projection, resolution and data partitioning schemes on a continental 
or even global scale.

A point is thus quickly reached where geopositioning model must 
satisfy very demanding functional requirements, yet any restriction on 
the data domain becomes unacceptable. From the application point of 
view, the mapping from an atomic surface fraction into a distinct 
internal numerical location descriptor must be global, continuous and 
conjugate.

Faced with these requirements, manual spatial data processing resorts 
to a combination of two techniques. A set of multiple planar 
projection systems (e.g. UTM "zones") is used to achieve - seldom 
successfully - the global coverage. Initially simple calculations are 
cluttered with various "correction" terms in order to deal with 
differences between planar coordinates and true object geometry.

A failure to understand the precise nature of spatial data 
(especially, by ignoring the profound conceptual difference between an 
analog map and the true data domain) often leads to a blind transplant 
of conventional cartographic techniques into a computerized system.
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This seldom results in a satisfactory geopositioning model: 
cartographic projections are notorious for their computational 
inefficiency; global coverage usually requires the use of 
location-specific transformations. Programming becomes progressively 
more complex as the precision requirements increase. Boundary 
problems are difficult to solve; this imposes discontinuities or size 
restrictions for the models of spatial data objects. Finally, 
classical cartography offers little or no help in modelling of the 
near-space geometry. The same system can therefore be forced to 
employ two disparate numerical methodologies: one for the positions 
on the Earth surface and quite another for orbital data. This 
presents an increasingly serious problem in many emerging high 
data-volume applications.

Design (or selection) criteria for a generalized location referencing 
numerical model and software will change from one computerized 
information system to another, but will be based - usually - on the 
size of the area of interest, spatial resolution, anticipated data 
volume, optimal computational efficiency, logical and geometrical 
complexity of objects modelled, and on the level of precision with 
which all these elements can be defined before the system is built. 
Nevertheless, it is possible to list important functional requirements 
that will pertain to a majority of extended coverage geographic 
information systems:

e Unrestricted numerical representation of arbitrarily-sized 
and -shaped objects with 0, 1 and 2 dimensions (i.e. points, 
lines, regions) relative to the surface of the Earth, and 
efficient evaluation their unions and intersections.

e Global coverage, without any regions of numerical instability 
or deterioration; ability to precisely model spatial 
relationships resulting from the unbounded, spheroidal nature 
of the data domain.

  Variable (application controlled!) levels of positional
resolution and computational geometry precision; up to sub- 
millimeter level for location framework or field-measurement 
related data.

a High utilization level of the coordinate data-storage space.

  Construction of data density and system activity level 
sensitive surface partitioning and indexing scheme; 
capability of dynamic re-partitioning in order to respond to 
a change in density or activity pattern of an operational 
system.

  Ability to effectively model the time/space relationships of 
surface, aeronautical and orbital movements.

The quality of a generalized geopositioning model will obviously 
depend not only on the extent to which the above criteria have been 
satisfied, but on its software engineering potential as well. The 
model must be capable of being implemented in program code which is 
efficient, reliable, portable, and easily interfaceble to a large 
number of different types of data-access services (i.e. file and 
indexing schemes, database software packages e.t.c.) and application 
problem-solving programs.
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The geopositioning model presented here consists of three key 
components: a) spheroidal cell structure analogous to planar Voronoi 
polygons; b) computational geodesy based on closed iterative 
algorithms, and c) an unlabored representation of global ellipsoid 
coordinates in terms of a cell identifier and description of location 
within the cell. Since the computational bridge between the global 
position and the location within the cell consists of a pseudo- 
stereographic ellipsoid-plane transformation, H1PPARCHUS has been 
chosen as the name for the model. (Hipparchus, (180-125 B.C.) - 
inventor of stereographic projection: the first truly practical 
geopositioning model.)

The HIPPARCHUS model provides a unique spatial framework, and includes 
the algorithms necessary to encode data and evaluate spatial 
relationships. In doing so, it attempts to satisfy - to the highest 
extent possible - all the requirements mentioned above. The nature of 
the framework and principles of its data manipulation techniques will 
be examined next in some detail.

GLOBAL ELLIPSOID COORDINATES

A plane or sphere can be used to represent the surface of the Earth 
only for limited-area, low-precision computations. A general purpose 
geopositioning model will, however, require a better fitting surface. 
Typically, a quadric, biaxial (rotational) ellipsoid is employed. 
(Triaxial ellipsoid and various sets of polynomial correction terms to 
a biaxial ellipsoid have both been employed in geodetic calculations 
and proposed for general cartographic use. The discussion of 
potential merits of those surfaces, and the ability of the proposed 
model to accommodate them numerically, are beyond the scope of this 
text.) The parameters of size and eccentricity of the reference 
ellipsoid can be determined by a combination of theoretical 
investigation into the equilibrium shape of a rotating near-liquid 
body and terrestrial geometry and satellite orbit observations. This 
is an open-ended process, resulting in occasional corrections of 
ever-decreasing magnitude.

The position on the surface of the ellipsoid can be represented 
numerically in many different ways. Conceptual clarity of the model, 
as well as practical software engineering considerations, demand that 
one such representation be used as a canonical form of global location 
descriptor throughout the model. The selection of this numerical form 
is one of the most critical decisions in the design of a 
geopositioning model.

The traditional angular measurements of latitude and longitude are 
extremely unsuitable for automated computations. Few, if any, spatial 
problems can avoid multiple evaluations of trigonometric functions. 
Moreover, convoluted programming techniques are often necessary to 
detect areas of numerical instability and adjust an algorithm 
accordingly. It would be simple to use Cartesian point coordinates 
instead, but the domain would no longer be restricted to the ellipsoid 
surface. An additional condition would have to be incorporated into 
the statement of most surface-related geometry problems.

The geometrical entity described by latitude and longitude is a vector 
normal to the surface of ellipsoid in the location thus defined. This 
vector can be expressed by its direction cosines, and a normalized 
triplet can be used as coordinates of a surface point. This appears
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to be an ideal canonical location descriptor: the domain is restricted 
to the surface; numerical manipulations based on vector algebra 
productions are easy to program and simple to test, and a common 
64-bit floating point numbers will yield sub-millimeter resolution 
even at radial distances that are an order of magnitude above the 
surface of the Earth.

Conventional formulae for the solution of ellipsoid geometry problems 
were typically obtained by expansion in terms of an ascending power 
series of eccentricity. While this was unavoidable for problems 
lacking a closed solution, it was also often used in order to reduce 
the number of digits which had to be carried in a numerical treatment 
of a geodetic problem with a limited spatial extent. As long as the 
eccentricity of the reference surface was constant, any a priori 
precision criterion could be satisfied by either finding the maximum 
value of the remainder dropped, or - more commonly - by deciding on 
the threshold exponent beyond which terms could be ignored for a whole 
class of practical problems.

Formulae thus obtained are useful for manual calculations but do not 
provide a sound base for the construction of efficient and 
data-independent computer algorithms.

The insight required to decide whether or not a particular set of 
formulae can or can not be used to solve a given problem is difficult 
to replicate in a program. Expansions must be checked and programmed 
with extreme care, since the influence of errors in higher terms can 
be easily mistaken for unavoidable numerical noise in the system. 
While the assumption of moderate and constant elliptical eccentricity 
might be valid for terrestrial problems, it represents an undue 
limitation in systems incorporating orbital geometry. Finally, in 
most computer hardware environments the full number of significant 
digits required to achieve sub-millimeter resolution can be used 
without any penalty in the execution time.

With the appropriate statement of conditions, all ellipsoid geometry 
problems of single periodic nature (i.e. those whose differential 
geometry statement does not lead to elliptic integrals) can be solved 
very efficiently, to any desired level of precision, using an 
iteration technique based on the alternate evaluation of conditions 
near the surface and at the point where the normal is closest to the 
coordinate origin. Ellipsoid coordinates consisting of three 
direction cosines offer significant advantages in all numerical 
algorithms required to carry out this iteration. The distinct 
advantage of this method (compared to a program based on expansion 
formulae) lies in its automatic self-adjustment to the computational 
load. The number of iterations will depend on the precision 
criterion, physical size of the problem and the measure of ellipsoid 
(or ellipse!) eccentricity. The same program can therefore be used 
for all global geometry problems of a given type, with full confidence 
that the desired precision has been achieved - in each individual 
invocation - through a minimum number of arithmetical operations 
necessary.

This approach can be applied not only to conventional geodetic 
problems but also to solve problems dealing with both surface and 
spatial entities. In particular, it will be effective solving the 
problems which deal simultaneously with the ellipsoid surface and with 
orbital parameters which are themselves of quadric nature.



It should be noted that only the framework data must be permanently 
retained in global ellipsoid coordinate values. As explained below, 
volume data coordinates can be stored in a much more efficient format, 
and transformed into ellipsoid coordinates in transient mode, whenever 
these are required.

SURFACE PARTITIONING AND LOCATION INDEXING

One of the essential facilities required for the design and 
construction of a geographical database is a surface partitioning 
scheme. On the simplest level, this provides a basis for indexing and 
retrieval of location-specific data. Even more important will be its 
use for efficient run-time evaluation of spatial unions and 
intersections, probably the most critical facility in construction of 
a fully relational spatial database system.

Where the potential for extended coverage is required, the 
partitioning scheme must be capable of dealing with the complete 
ellipsoidal surface. This can not be achieved using any of the 
regular tessellations which have been proposed as the base for 
hierarchical data-cells: beyond the equivalent of the five Platonic 
solids, the sphere can not be divided into a finite number of equal, 
regular surface elements.

Various schemes based on latitude/longitude "rectangles" are often 
used for large coverage or global databases. However, resulting cell 
network is hard to modify in size and density, high-latitude coverage 
can be restricted or inefficient, and in most cases the approach 
forces the use of unwieldy angular coordinates.

By contrast, the partitioning scheme used in the HIPPARCHUS model is 
based on spheroidal cells analogous to planar Voronoi polygons. The 
definition of the structure is simple. Given a set of distinct 
(center)points, a spheroidal polygon-cell corresponding to one of them 
is defined as a set of all surface points "closer" to it than to any 
other member of the centerpoint set. For each surface point, the 
minimum "distance" to any point in the set of centers can be 
determined: if there is only one centerpoint at such a distance, the 
point is within a cell. If there are two, it belongs to an edge. If 
there are three, the point is a vertex. A dual of the set of polygons 
is obtained by connecting the centerpoints which share an edge.

The application can define a pattern of cells by any purposefully 
distributed set of centerpoints. Since tnese are defined by their 
normals, the partitioning scheme is completely tree from condescending 
to any numerically singular surface point. The distribution of 
centerpoints can be based on any combination of criteria selected by 
the application: data volume distribution, system activity patterns, 
maximum or minimum cell size limits. It can even represent an existing 
set of spatial framework items, e.g. geodetic control stations.

A sort-like algorithm produces the digital model of the dual. The 
cell frame structure is thus reduced to a list of global, ellipsoid 
coordinates of centerpoints and a circular list of neighbor 
identifiers for each cell. If the application requires that a limit 
be placed on the maximum "distance" between neighboring centerpoints, 
the algorithm must be capable of bridging the "voids", and null items 
must be recognizable in the circular list. This data structure is 
used extensively by all spatial algorithms. Unlike systems in which
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location of the cell is implied in its identifier, the HIPPARCHUS 
model requires explicit recording of the global coordinates of cell 
centers. Method of storage and access to this data can therefore have 
considerable influence on the efficiency of spatial processing.

A cell is assigned an internal coordinate system with the origin at 
its centerpoint. As mentioned before, the mapping function between 
global and cell systems is an ellipsoid-modified stereographic 
projection. The "transformation algorithms" (in both directions) 
consist therefore of nothing but a few floating-point multiplications.

"Finite Element Cartography". If a large volume of data has to be 
transformed into output device coordinates based on a specific 
conventional cartographic projection, only a few points on the cell 
(or the display surface) frame will have to be transformed using a 
rigorous cartographic projection calculation. Based on the frame 
data/display correspondence, parameters of a simple polynomial 
transformation are easily calculated. Volume transformations will 
again require only a tew multiplications, and can be set to produce 
the result directly in hardware coordinates of an output device. This 
type of manipulation can be of particular value if a complex 
geometronical function has to be applied over the complete surface of 
a dense data set, for instance in transient cartographic restitution 
of digital remote sensor image material.

One of the most often executed algorithms in the model will probably 
be the search for the "home cell" of an arbitrary global location. 
Selection of the first candidate cell is left to the application, in 
order to exploit any systematic bias in either transient or permanent 
location reference distribution. A list of all neighbors is 
traversed, and distances from the given location to the neighbor 
centerpoints are determined. If all these distances are greater than 
the distance from the current candidate centerpoint, the problem is 
solved. Otherwise, the minimum value indicates a better candidate. 
While the algorithm is very straightforward, its efficiency will be 
extremely sensitive to the selection of the spheroid "distance" 
definition and numerical characteristics of global coordinates. The 
same will apply to most combined list-processing and numerical 
algorithms employed by the model.

Fig. 2: Trace of home cell search algorithm
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While Voronoi polygons have often been used in computer algorithms 
solving various classes of planar navigation problems, at the time of 
this writing no record was found of the use of an equivalent global, 
spheroidal structure as a partitioning scheme in a geometronical 
computer system.

MODELLING OF SPATIAL DATA OBJECTS

Points: Digital representation of a point data element is simple: it 
consists of a cell identifier and local (cell) coordinates. Even with 
fairly large cells, the global-to-local scaling will ensure equivalent 
spatial resolution in case where local coordinate values have only 
one-half of the significant digits used for global coordinate values. 
Since the efficiency of external storage use and the associated speed 
of I/O transfer can be of extreme importance in a large database, the 
following numerical data are of interest:

If a 64-bit global, a 32-bit local coordinate values and 16-bit cell 
identifier are used, the volume data point representation will require 
only 80 bits, and will still yield sub-millimeter resolution. 
80 binary digits are capable of storing 2**80 (approximately 1.2E24) 
distinct values; the surface of the Earth is approximately 5.1E20 
square millimeters. The ratio of these two numbers (approximately 69 
out of 80) represents the theoretical memory utilization factor; 
practically, the margin allows significant variation in cell size and 
use of various computational conveniences (floating point notation, 
cell range encoding, e.t.c.). This utilization factor compares to 69 
bits out of 128 if the point is represented by latitude/longitude in 
radian measure, and 69 out of 144 bits (typically) if a conventional, 
wide-coverage cartographic projection system plane identifier and 
coordinates are used. Furthermore, various external storage 
compression schemes that take advantage of the re-occurring cell 
identifier are likely to be significantly simpler and more effective 
than any compression scheme of a pure numerical coordinate value.

It is important to note that in HIPPARCHUS model cell coordinates of a 
point are not used for a numerical solution of metric problems; their 
purpose is to provide a compressed coordinate storage format for 
high-volume data, and to facilitate generation of the transient, 
analog view of the data.

Lines; One-dimensional objects are represented by an ordered list of 
cells traversed by the line, and - within each cell - a list, 
(possibly null) of vertices in the point format described above. If 
the application requires frequent evaluations of spatial unions and 
intersections, it might be efficient to find and store permanently all 
points where lines cross cell boundaries. Their internal 
representation (permanent or transient) is somewhat modified in order 
to restrict their domain to the one-dimensional edge, but their 
resolution and storage requirements will be comparable to the general 
point format used by the model.

Regions; Two-dimensional objects are represented by a directed 
circular boundary line and an encoded aggregate list of cells that are 
completely within the region. When compared to simple boundary line 
circular vertex list, this structure makes the evaluation of spatial 
relationships significantly more efficient. The solution will often 
be reached by simple manipulation of cell identifier lists, instead of 
the evaluation of boundary geometry. The number of cases where,
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ceteris paribus, this will be possible, will be inversely proportional 
to the average cell size. (In example in Fig. 3, boundary geometry 
examination will be confined to three cells.) This representation of 
a two-dimensional object is a combination of the traditional boundary 
representation and schemes based on regular planar tessellations. It 
offers the high resolution and precision usually associated with the 
former, while approaching the efficiency of relational evaluations of 
the latter. In addition, it does not violate the true spherical nature 
of the data domain. For instance, if [A] is a region, then NOT [A] is 
an infinite, numerically ill-defined region in a plane. By contrast, 
on any spheroidal surface NOT [A] is the simple finite complement.

Fig. 3: Intersection of two-dimensional objects

Orbit Dynamics; Practice abounds with examples of problems encountered 
in attempts to integrate remote sensing and existing terrestrial data. 
Even in instances where the spatial geometry can be defined with 
sufficient precision, it is common to cast (by "pre-processing") the 
digital image produced by a satellite sensor into a specific plane 
projection system and pixel aspect ratio and orientation. This 
unnecessarily increases the entropy of remotely sensed data available 
to applications requiring different or no planar castings. In many 
instances, problems will disappear if the application is given the 
ability to manipulate the original, undistorted, observation geometry.

A general-purpose geopositioning software tool must therefore provide 
efficient evaluation of basic time/geometry relationships within the 
orbital plane, and the ability to transfer the locations from an 
instantaneous orbit plane to its primary frame of spatial reference. 
(More complex calculations are probably application-specific and are 
restricted to infrequent adjustments of orbit parameters.)

The geometry functions described already suffice to define any orbit 
at the convenient epoch - e.g. the time of the last parameter 
adjustment. To find a position (in the orbital plane) of a platform 
at a given time, a direct solution of the problem postulated by 
Kepler's second law is required. (Same as in geodetic problems 
mentioned previously, this "direct" problem requires an iteration, 
while the "inverse" yields a closed solution.) Any increase of orbit 
eccentricity will affect the number of iterations, but the same 
software component can be used to solve both near-circular and steep 
orbits. Common 64-bit floating point representation will preserve 
millimetric resolution even for geosynchronous orbits. Rigorous 
modelling of general precession can be achieved simply by an
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additional vector rotation about the polar axis. This is combined 
easily with sidereal rotation, required in any case for transfer of 
position between the inertial and terrestrial frames of reference.

Fig. 4: Orthographic view of a precessing orbit 

CONCLUSION

Use of computers in mapping is as old as the computer itself: the 
first commercially marketed computer, UNIVAC 1, was used in 1952 to 
calculate Gauss-Krueger projection tables. With the development of 
computer graphics, it quickly became common to store and update a 
graphical scheme representing a map. Until very recently, the main 
object of this process remained the production of graphical output 
that was not substantially different from a conventional analog map. 
While the production of the map was thus computerized, the ability of 
an "end-use" quantitative discipline to employ a computer to solve 
complex spatial problems was not addressed.' The use of a "computer 
map" was precisely the same as that of a traditional, manually 
produced document.

All quantitative disciplines are facing the same demands as 
cartography to increase precision, volume and complexity of data which 
can be efficiently processed. Hence, computer applications in those 
disciplines require "maps" from which spatial inferences can be 
derived not only by the traditional map user, but also by a set of 
computer application programs. To a limited extent only, this has 
been achieved in applications which could tolerate severe limitations 
on area of coverage, data volumes, or spatial resolution requirements. 
Location attributes in these computer systems are usually based on an 
extended coverage ellipsoid-to-plane conformal projection: a numerical 
model developed for a completely different purpose.

Computer systems requiring extensive spatial modelling combined with 
high resolution and global coverage need powerful yet efficient 
numerical georeferencing models. It is unlikely that these can be 
based on conventional cartographic techniques. Numerical methodologies 
designed specifically for the computerized handling of spatial data 
have the best potential for providing generalized solutions.
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