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ABSTRACT

The concept of fractals is being widely used in several 
cartographic procedures such as line enhancement, surface 
generation, generalisation, interpolation and error esti 
mation. Such applications rely on the estimation of the 
fractional dimension (D) of lines and surfaces. Measuring 
D for surfaces can be achieved from contours and profiles 
extracted from the surface or from the variability of the 
surface taken as a whole. In a fractal and self-similar 
terrain, the values of D should be in agreement regardless 
of the method used. Mark and Aronson (1984) applied the 
variogram technique to DEM and observed sharp changes in D 
with scale suggesting that terrains are composed of nested 
structures with a highly disorganised and complex v compo 
nent (D=2.6) in the long range and a smooth component (D=
2.2) in the short range. The high dimensions may not re 
flect the terrain itself but be the result of combining 
residual anisotropic effects at long distances. Tests per 
formed on DEM (or portions of DEM) show that the short 
range dimensions of the surface variogram are consistent 
with those extracted from profiles and contours (2.0-=D<
2.3). Systematic variations of D with altitude and loca 
tion were also observed indicating a lack of self-similar 
ity in spite of the apparent self-similarity of the sur 
face variogram.

INTRODUCTION

Several applications of fractals to cartographic lines and 
surfaces are now well entrenched in the literature. The 
fractional dimension which characterizes the geometry of a 
line or surface is a powerful tool for analysis, descrip 
tion and generation of cartographic data. Cartographic 
lines appear to be more easily reduced to fractal anal 
ysis than surfaces. One problem that arises when 
dealing with surfaces is the difficulty of estimating 
their fractional dimension. This difficulty is partly ex 
plained by the availability of several methods for the 
computation of the dimension and by the lack of self-sim 
ilarity in natural terrains. This paper addresses these 
problems and discusses some implications for cartography.
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FRACTALS AND THEIR APPLICATION IN CARTOGRAPHY

This brief review of fractals will emphasize the proper 
ties of fractal sets and their applications in the field 
of cartography. Fractals were introduced by Mandelbrot 
(1977) to describe, among other things, irregular lines 
and surfaces. Strictly speaking, fractal applies to en 
tities which have an Hausdorff-Besicovitch dimension (D) 
greater than the topological dimension. The value of D 
characterizes the intricacy or the jaggedness of the enti 
ty. Lines will have dimensions varying from 1 to 2 while 
surfaces are described by values of D ranging from 2 to 3. 
As D increases towards the upper value of the range, the 
entity becomes highly complex and intricate and the pro 
cess associated with the line (or surface) is space-fill 
ing.

Fractal models of lines and surfaces may be created 
through fractional Brownian processes (Mandelbrot 1975; 
Goodchild 1982; Burrough 1983). In practice, fractional 
Brownian functions may be generated from fractional 
Gaussian noise. Several properties of such processes are 
noteworthy. First, the variogram of fractional Brownian 
functions is described by

9 Orr 

E t (Z i ~ Z i + h } l = h (1)

where h is the distance (or lag) between two points and z., 
z. + , are the values observed at point i and i+h respec 
tively. The variogram takes on the form of a power func 
tion in which H should vary between 0 and 1. In the case 
of profiles

D = 2 - H (2)

while for fractional Brownian surfaces

D = 3 - H . (3)

Secondly, the covariance function of such processes also 
display a relationship with H and consequently with D. 
As H increases toward its upper limit, the positive auto 
correlation between neighbouring values is very strong and 
the realization of the process is very smooth. The proc 
ess is Brownian for H=0.5. When H gets below 0.5, then 
the process tends to become anti-persistent and negatively 
auto-correlated.' Profiles and surfaces generated with 
values of H lower than 0.5 are very jagged and erratic 
(Burrough 1983; Goodchild 1982; Culling 1986) and will 
display a rapid succession of peaks and throughs. Similar 
interpretations of D in geostatistical terms may be found 
through the applications of the power spectrum (Mandelbrot 
1982; Pentland 1983) .

Fractal models display the property of self-similarity 
which may be viewed strictly as a cascading mechanism of 
a fractal generator (Mandelbrot 1977). Self-similarity 
also implies that H and therefore D, the fractional
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dimension of an entity, is constant with changes in scale. 
Thus, small portions of the process are replicates of the 
global structure. By looking at the realization of a 
fractional Brownian process, one cannot infer its scale. 
For fractal surfaces, the same process has operated across 
the whole entity and self-similarity is associated with 
isotropy, that is the lack of directional bias in the geo- 
statistical properties of the surface. Thus, profiles ex 
tracted from the fractal surface will have the same dimen 
sion than that of the surface itself less one. Contours 
and coastlines will also display the same dimension than 
the profiles. Self-similarity implies dimensional consis 
tency among the lines and the surface.

Because it deals with the effect of scale on the metric 
of lines and surfaces, the concept of fractals has proven 
to be very useful to cartographers. The addition (or e- 
limination) of details into a cartographic entity say a 
line is a process that may be consistent with the fractal 
geometry (Buttenfield 1985). Line degeneralization pi- 
onnered by Button (1981) used the fractal dimension to 
introduce details into a generalized line. This frac- 
talization process enhances the line. Algorithms for 
fractal interpolation are well known (Fournier et al. 
1982) and are also used to generate terrain profiles (Fre- 
deriksen et al. 1985). Muller (in press a) proposed to rely 
on the property of self-similarity as a standard to assess 
the quality of line generalization. A generalized line 
should be self-similar to the original. Furthermore, ef 
ficient line generalization may be achieved through the 
application of walking-step algorithm which is a straight 
forward application of fractals (Dubuc 1985; Muller in 
press b).

Errors in sampling and measuring from cartographic data 
are also related to fractals as it was shown by Goodchild 
(1980). Because errors increase with the complexity of 
the entity, they will increase with D. Moreover, fractal 
dimensions may be used to determine the sampling density 
required to capture the variability of the phenomenon. 
Blais et al. (1986) and Dubuc (1985) provided methods of 
specifying the optimal resolution which are based upon 
the fractal behavior of the lines or profiles.

Surfaces and more specifically terrain generation has 
relied heavily on fractals (Mandelbrot 1975; Fournier et 
al. 1982; Goodchild 1982). Although fractional Brownian 
landscapes with dimensions of 2.2-2.3 achieve realistic 
representations of the surface of the earth, little is 
known about the dimensionality of natural terrains. The 
estimation of the dimension of a natural surface may be 
problematic, however. Different methods are available 
for computing D, all of which should yield similar results 
if the assumption of self-similarity holds. Given that 
the processes acting upon the landscape vary with scale, 
self-similarity may not exist at all scales and for all 
natural terrains (Mark and Aronson 1984). Goodchild 
(1982) reported systematic variation in D as we climb 
from the shorelines to the summit of Random Island. Mark 
and Aronson (1984) suggested that many landscapes are
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generated by nesting structures of varying complexity. 
The problem of estimating D for a surface is compounded 
by the fact that the different methods may be applied to 
data coming from different sources which may or may not 
incorporate a high degree of cartographic generalization.

MEASURE OF THE FRACTAL DIMENSION OF SURFACES

The properties associated with fractional Brownian proc 
esses are used to estimate the values of D which may be 
computed from the variograms of the surface (eq. 1 and 3) 
or of the profiles (eq. 1 and 2). These dimensions should 
be consistent with those extracted from contours or coast 
lines. Mark and Aronson (1984) presented a method to 
construct the surface variogram of a Digital Elevation 
Model (DEM) recorded along a regular grid. They proceeded 
as follows. They randomly selected 32000 pairs of points. 
Each point had to be within the largest circle drawn 
within the map. For each pair of points, distance and 
the squared difference in elevation were computed. The 
set of measurements was then divided into 100 distance 
classes of equal size and then the variance of each class 
was computed. Classes with less than 64 observations were 
omitted.

They applied their method to seventeen 7| quadrangles ob 
tained from the USGS. In 15 out 17 cases, they reported 
that the surface variogram could be described by at least 
two markedly different slopes (H) and thus two dimensions. 
At short ranges, for distances smaller than 0.6 - 1 km, 
they observed relatively low values of D (D-=2.48 and 
close to 2.1) while for longer distances (1 to 4 km) they 
noted a sharp increase in D sometimes up to 2.8. The 
average D for this range is 2.6 thus suggesting a very 
irregular terrain. The low values of D in the short range 
are more consistent with what has been previously reported 
in the literature (see Culling 1986) and identifies the 
strong positive auto-correlation at the hillslope scale. 
The higher D values are more problematic, however, and 
although the authors suggest a structural interpretation 
of the high irregularity, this result is unexpected.

Several problems seem embedded in the method presented by 
Mark and Aronson (1984). First, the sampling plan is 
biased towards the long range of the variogram and the 
random selection of pairs of points within a circle will 
always generate many more middle and long distances than 
short ones. Thus, by allowing the random selection of 
pairs of points, the emphasis is put on the part of the 
variogram which is farther away from the origin. In view 
of the fact that the analysis of the variogram tends to 
rely on the proximal part of the plot, this sampling bias 
may be important and yield unreliable D values in the 
short range. Furthermore, normal use of variograms tends 
to exclude the variances computed for the range of dis 
tances farther away than \ of the maximum distance on the 
map. Finally, the surface variogram may be viewed as a 
composite of profile variograms which may display differ 
ent characteristics according to the direction. Such 
directional biases will represent anisotropies of the
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terrain. In order to avoid a sampling bias, variances 
should be computed for selected distance classes. A point 
could be randomly chosen within the largest circle con 
tained in the map. The selected distance could be walked 
from that point in a direction which would be determined 
randomly. If the end point of the walk is outside the 
circle, the pair of points would be rejected from the a- 
nalysis. This scheme is advantageous because we control 
the distance classes which could be specified in a geomet 
ric progression and also because the number of pairs in 
each class could be determined a priori.

Nonetheless, the surface variogram should be preceded by 
an analysis of profile variograms which would allow to de 
tect the presence of anisotropies. The search for direc 
tional bias can only be done in the NW, NE-SW, NW-SE, NS di 
rections, however. All other directions would involve 
interpolated values and the variogram would not reflect 
the variability of the raw data. Profile variograms are 
simply build from the systematic sampling of all possible 
pairs of points separated by a distance h. Thus, the es 
timates of the variance at a longer range are derived from 
fewer pairs of points and the variogram should be reliable 
for distances shorter than one fourth of the maximal dis 
tance .

The dimension of a surface may be found from the dimen 
sions of the contours and coastlines. In doing so, we are 
concerned with three problems. First, several techniques 
are currently used to estimate D for such lines. Most of 
these techniques involve the estimation of the rate of 
change in length with an increase in the sampling interval. 
The slope (b) of the log-linear relationship between the 
length of the line and the length of the divider used to 
measure it is given by

b = 1 - D . (4)

Other methods rely on cell counting algorithms (Goodchild 
1982; Shelberg et _al. 1983). Goodchild (1982) compared 
several techniques and obtained higher estimates of D when 
length was measured from a cell counting method. Relia 
bility of each method is difficult to assess, however. 
Secondly, the selection of the contours that we submit to 
fractal analysis may be critical. In a self-similar ter 
rain, this would not be of concern since all contours dis 
play similar complexity. Natural terrains may exhibit 
systematic variations in complexity as was pointed out by 
Goodchild (1982). Shelberg et al. (1983) suggested that 
a set of contours should be used in the analysis. Final 
ly, should the contours be taken from the maps (Goodchild
1982) or derived from the DEM itself (Shelberg et al.
1983) ? If cartographic generalization preserves self- 
similarity, then the source of the data would not affect 
the estimation of D. Such a postulate remains to be shown.
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FIGURE 1: Three 80 x 80 windows extracted from the DEM
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APPLICATIONS TO DIGITAL ELEVATION MODELS

The different methods of calculating D were applied to a 
USGS DEM of an area located in the White Mountains at the 
border of Quebec, Maine and New Hamshire (Moose Bog 7J 
Quadrangle). Maximum relief in the quadrangle is 700 m. 
Three 80 x 80 windows illustrating different landscapes 
within the area - a- fluvial landscape at the headwater 
of a stream (Fig. 1 A), a summit area (Fig. 1 B) and a 
valley filled with glacial sediments (Fig. 1C)- were 
also submitted to fractal analysis. For the whole quad 
rangle and the three windows, 'D was estimated using four 
techniques:

- the surface variogram sampled using the fixed 
length technique;

- the variograms of profiles taken across the DEM in 
the^EW, NS directions and along the diagonals;

- the contours digitized from the topographic map;
- the contours threaded into the altitude matrix. 

The dimensions of contours were evaluated using the divid 
ers technique.

The surface variogram (Fig 2 A) obtained from the whole 
DEM shows an initial straight segment up to a lag of 2.0 
km (64 pixels) with a constant slope (H = .84). D is 
therefore equal to 2.16 and it indicates a strong positive 
auto-correlation of elevations. The distal part of the 
variogram for longer lags also has a trend (H = .18). The 
break in slope is sharp as was the case of the examples 
presented by Mark and Aronson (1984) but it occurs close 
to the limit of reliability of the variogram (one fourth 
of the maximum distance is 79 pixels). The variances 
computed for the surface result from the composite effects 
of the profiles. This is shown in Figure 2 B where all 20 
profile variograms are plotted. We note that the slopes 
of the initial segment are relatively constant while the 
distal parts of the variograms are highly variable. The 
residual trend observed in the surface variogram is clear 
ly the amalgam of highly variable behaviois at longer dis 
tances and cannot be meaningfully interpreted. Thus, we 
conclude from the surface variogram that it describes an 
apparently self-similar terrain. This conclusion was also 
confirmed by plotting the profiles to scale and sampling 
them at various intervals. Smoothness of the terrain was 
always evident.

TABLE 1: Dimensions computed from different 
methods for the DEM as a whole

METHOD D DMIN DMAX

Surface Variogram 2.16      
EW Profile Variograms(9) 1.13 1.06 1.19
NS Profile Variograms(9) 1.17 1.09 1.28
Diagonal Profile Variograms(2) 1.21 1.17 1.25
Digitized Contours(13) 1.17 1.06 1.33
Threaded Contours(47) 1.09 1.01 1.28
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FIGURE 2: Surface (A) and profile (B) varioqrams for the whole DEM
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The average values of D computed from all methods are 
strickingly consistent (Table 1). The low D confirm the 
smoothness of the landscape despite a great amount of ver 
tical relief in the area. Minimum and maximum D values 
show some variability in the estimation of D. The varia 
bility is greater for the digitized contours. This is 
explained by the sampling plan which attempted to capture 
the whole range of contour complexity.

TABLE 2: Dimensions computed from different 
methods for three 80 x 80 windows

METHOD

Surface Variograms 
EW Profile Variograms 
NS Profile Variograms 
Threaded Contours

WINDOW 1 WINDOW 2 WTNDOW 3

2.13
1.11
1.17
1.07

2.10
1.10
1.13
1.08

2.21
1.28
1.15
1.10

The comparison of D values obtained for the three windows 
shows differences among the terrain complexities especial 
ly when we look at the values obtained from the variograms 
The valley filled with glacial deposits (Fig. 1 C) has a 
higher complexity than the summit area (Fig. 1 B) or the 
fluvial landscape (Fig. 1 A). This difference had to be 
expected and becomes even more important when the dimen 
sions of individual profiles are compared (Fig. 1 C). All 
profiles that entirely cut through the valley bottom have 
a high dimension (0 = 1.37-1.44) while those on the hill 
side are very smooth (D-=1.10). Some profiles combine the 
attributes of both types of terrain. Thus within a rela 
tively small terrain we assist to rapid changes in com 
plexity depending on the nature of the sediments. At this 
scale, the lack of self-similarity is shown through a 
juxtaposition of terrain rather than by nesting smooth 
within complex structures as is evident from an examination 
of the contours. Contours become less intricate with al 
titude (Fig. 3). This is due to the erratic nature of the
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glacial deposits which were laid upon the valley bottom and 
to the gradual disappearance, as we climb towards the sum 
mits, of the crenulations associated with fluvial erosion.

DISCUSSION

Despite the apparent self-similarity of the whole quad 
rangle, spatial variations in D occur within the DEM. 
These effects are not detected from the surface variogram 
because they are not scale-related and the averaging proc 
ess cancel their individual effect. Goodchild (1982) has 
also reported similar changes in the fractional dimensions 
of contours with altitude. In fact, one should anticipate 
that the dimensionality of most natural terrains should 
vary spatially. Variations in processes and/or structures 
may be responsible for these changes in dimensions. For 
example, creep will produce smoother surfaces than rill 
erosion. Systematic variations in the dimension within 
the surface bear important cartographic consequences. For 
instance, the degeneralization of contours should not be 
carried out using a unique fractalization process. Ele 
vation and physiographic location must be used to guide the 
interpolation and enhancement procedures. A similar ra 
tionale also applies to terrain sampling as the optimal 
density should be a function of terrain complexity. Hill 
tops (in this case study) should be represented with fewer 
points than the valley floors. The fractal description of 
a surface should provide useful information for terrain 
generation and reconstruction and more attention should 
be given to the fractal signature of characteristic ter 
rains (e.g. fluvial, morainic, eolian landscapes). This 
conclusion is not unlike that of Mark and Aronson (1984) 
who viewed the nested structure of terrains as a key com 
ponent of surface generation. We suggest, however, that 
the nesting effect is not terrain-related at least in the 
range of distances where it was observed but rather that 
the detection of self-similar patches of terrains could be 
used advantageously by cartographers.
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