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ABSTRACT

Conventional methods of thematic mapping often assume 
implicitly that only one major pattern can be recognized at 
any given scale of mapping. Conventional thematic map 
representations model spatial units by 'homogeneous' units 
or polygons representing the various components of the 
pattern being mapped. Interpolation methods allow gradual 
variation toithin spatial units to be mapped but they 
commonly also ignore the problems that arise from 
multiscale sources of variation. Observed natural 
variation may be caused by a number of separate spatial 
processes operating with various weights (intensities) over 
a range of scales. This paper reviews some ways in which 
theoretical multiscale models, complex semivariograms, 
robust methods and sampling strategies can be applied to 
the problem of multiple sources of spatial variation.

INTRODUCTION

The search for quick, cheap, simple, reliable and universal 
ways with which to capture and describe the spatial 
variation of attributes of the natural environment is a 
current major research activity. There are many ways to 
describe and map the spatial variation of soil, vegetation, 
landform, groundwater or pollution. Some researchers 
follow the well-worn paths of tried and tested methods 
while others strike out through thorny, mathematically 
difficult terrain. In spite of many, local near successes, 
and many global failures, the search for useful, reliable 
methods of spatial analysis continues unabated across all 
disciplines whose object it is to study the spatial 
variation of attributes of the earth's surface. 
Considering the costs involved in collecting and analysing 
spatial data, and the implications for landuse planning 
decisions of incorporating poor or incorrect data in 
geographical information systems, it is crucially important 
for data users to know how spatial data have been modelled, 
and what the limitations of these models are. One 
limitation that is frequently overlooked when choosing an 
interpolation method is the presence of important variation 
at several scales which may confound or reduce the success 
of the chosen spatial modelling technique.
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Methods For spatial analusis

The two basic approaches to mapping the spatial distri 
bution of any given attribute, or regionalized variable 
CHatheron 1971) are summarized in Table 1. In the first 
approach one has total coverage of an area, usually with 
remotely sensed imagery Caerial photos or digital scanned 
images) of an attribute or attributes that are thought to 
be correlated with the required environmental property. In 
the second approach one samples the property of interest 
directly at certain locations from which a model of the 
spatial variation is created by interpolation.

Table 1. Basic approaches to mapping 

Whole area approach

- Many observations of cheap, possibly relevant data.
- Divide area into regular units Cpixels) or into 

'natural' units
- Devise and use hierarchical classification schemes
- Discover relations between attribute values of pixels or 
class means of 'natural' units and attribute of interest,

Point sampling approach.

- Choose sampling strategy (regular grid, stratified 
random, etc.)

- Choose and apply interpolation method 
Cglobal, local, etc.).

- (lap isolines

MATHEflATICAL MODELS OF SPATIAL UARIATION

The classificatory, choropleth map model approach relies on 
the model

ZCx) = jj + c<j +   CD

Where ZCx) is the value of attribute Z at point x, ^ is the 
general mean of the area in question, o<j is the 
deviation between the mean of class j and ^, and   is the 
residual variation, usually assumed in the first instance to 
be a normally distributed Gaussian noise function having 
zero mean and variance <? 2 . The weakness of this model is 
revealed every time an area is remapped at a larger scale, 
thereby 'discovering' spatial structure in what was 
previously regarded as spatially unstructured and 
uncorrelated 'noise'. As this process of remapping at 
larger and larger scales can continue endlessly, the 
success of this mapping approach depends greatly on the 
balance between the different kinds and scales of spatial 
variation present. The universal nature of this problem is 
revealed by studies that show that irrespective of map 
scale, the distribution of boundaries on thematic 
choropleth maps over a wide range of scales can be modelled 
satisfactorily by a Poisson distribution
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PCx) = 1 - exp (->x) (E)

or related Functions such as the Gamma distribution or the 
Uleibull Function (Burgess and Webster 1984, Burrough 1986)

Short-range variation in digital imagery.

The presence oF short-range variation in digital imagery is 
usually considered a nuisance that needs to be removed. IF 
the source oF the noise is known, many techniques exist For 
its removal Ce.g. destriping LANDSAT images). IF the 
source is unknown, but local, simple digital Filter 
techniques exist For mechanistic removal oF the unwanted 
noise Cc.F. RosenFeld and Kak 1976). Statistical methods 
oF image analysis, recently reviewed by Ripley (1986) also 
assume that at the chosen observation scale a clear signal 
is waiting to be cleaned up (see also Besag 1987).

Methods oF interpolation.

In many situations such as in studies oF soil Fertility or 
pollution, it is impossible or impractical to obtain a 
complete overview using surrogate attributes and so the 
phenomenon oF interest must be mapped using samples 
collected at point locations. The overall distribution oF 
the variation oF the phenomenon is then determined by 
interpolation. Methods oF spatial interpolation (c.F. 
Agterberg 1982, Burrough 1986, Davis 1986, Lam 1983, Ripley 
1981) adopt either a global or a local approach. Global 
methods, such as trend surFace analysis, parallel 
choropleth map models in the sense that they attempt to 
'explain' large amounts oF spatial variation in terms oF 
single structural units (complex polynomials). Just as 
with the choropleth map models, the 'noise' usually 
contains short-range spatially correlated variation. 
Local methods avoid these problems, but introduce others, 
such as how best to choose the local weighting Function and 
how to select the most appropriate method oF interpolation 
(e.g. smooth B-splines or moving weighted averages).

Optimal methods oF interpolation (krinino).

The set oF interpolation techniques collectively known as 
kriging recognise that spatial variation may be the result 
oF structural, locally random but spatially correlated, and 
uncorrelated components. InFormation about these various 
components is used to compute the weights For local 
interpolation in such a way as to minimize the variance oF 
the interpolation estimate. The basic model is:

2(x) = m(x) +  '(x) +  " (3)

in which the value oF attribute Z at point x is modelled by 
m(x), a deterministic Function describing the 'structural' 
component oF variation,  '(x) is a Function describing the 
local, spatially correlated variation oF 2, and  " is a 
random noise term. The essential steps in kriging (Journel 
and Huijbregts 1978, Webster 1985) are:
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1. Sampling to determine the sample semivariogram
2. Fitting an appropriate model to the sample 

semivariogram
3. Using the semivariogram model to supply appropriate 

values of the weights with which to obtain estimates 
of the value of Z at unvisited paints xO.

MULTIPLE SCALES OF UARIATION AND KRIGING

Kriging is a practical and a conceptual advance on previous 
methods of spatial interpolation because it allows 
'non-structural' variation to be considered as being 
comprised of spatially correlated variation and random 
variation. The critical aspects of kriging, however, are 
the fundamental assumptions of the method and the choice 
and fitting of semivariogram models. In both instances, 
the type and nature of multiscale variation can be 
critically important.

The fundamental assumptions of kriging are contained in the 
intrinsic hypothesis of regionalized variable theory which 
regards spatial variation as the outcome of a random 
process with certain stationarity conditions. These are:

1 . That the expected difference in the value of Z at any 
two places separated distance h is zero:

ECZCx) - ZCx+J-OD = 0 C4)

2. the variance of the differences depends on h and not on 
x, and is given by:

varCZCx) - ZCx+hDD = ECCZCx) - ZCx+h)} 2 }
- 2 Ch) C55

Clearly, these assumptions require that the spatial process 
in question operates over the whole of the area to which 
consideration is being given.

The semivarioaram and semivariooram models.

The semivariogram displays the variation of semivariance 
with sample spacing, h. It is obtained by sampling and 
through the intrinsic hypothesis it is estimated by

  1 nCh)
JCh) -      . E CzCx ) - zCx + h)} 2 CB)

2nCh) i-1 i i

where nCh) is the number of pairs of observations with 
separation h.

Usually, the weights for interpolation are obtained by 
fitting a suitable model to the experimentally estimated 
semivariances . Two major classes of semivariogram model 
have been recognised: a) the transitive models; b) 
unbounded models.

148



Because of the variance of the estimate Z at any point can 
not be less than zero, the sample semivariogram cannot be 
modelled by any function that appears to fit the 
distribution of points. The following authorized 
models are recommended for use (NcBratney and 
Webster 1986):

a) transitive models - i.e. models in which the semi- 
variance appears to reach a constant level Cthe sill) at a 
certain sample spacing or range:

linear model with sill C1D only)
circular model (ID, 2D)
spherical model C2D, 3D)
gaussian model C1D, ED)
exponential model C1D, 2D, 3D)

b) unbounded models - i.e. models in which the semivariance 
continues to increase with sample spacing:

linear model C1D, 2D, 3D)
logarithmic model C1D, 2D, 3D)
brownian fractal model C1D, 2D, 3D)

flultiscale variation.
All transitive models, with the exception of the exponential 
model, imply that the observed variation has been generated 
by a spatial process that operates at a definite scale, for 
example within overlapping blocks that have a definite size 
or scale. Under these circumstances the spatial model given 
by equation C3) describes the situation adequately. With 
the exponential model, and the unbounded models, however, 
it is implicit that variations can occur over a range of 
scales. The exponential model suggests that the 
overlapping blocks vary randomly in size; the unbounded 
models, particularly the fractal and the logarithmic model, 
suggest that spatial variation occurs at many scales. A 
semivariogram that approaches the origin parabolically may 
signify changing drift Ci.e. change in the value of 
ECZCx)D with x caused by local or regional trends - i.e. 
variation at another scale). Changing drift can be handled 
either by using a full structural analysis and universal 
kriging as described by Olea C1975), or by using intrinsic 
random functions of a higher order that the semivariogram 
to describe the spatial variation (tlatheron 1973) .

Choosing the correct semivariogram model is critical for 
kriging, yet little attention seems to have been paid to 
the physical grounds for choosing any particular model. 
There are several aspects of the problem. The first is the 
nature of the variation being studied - is it the result of 
a single, dominant process or the sum result of several 
superimposed processes? What kind of spatial distribution 
results from a given physical process? The second is the 
problem of sampling variation on the estimated semi 
variogram - how much can the form of a semivariogram vary 
according to the sample of points used? The third is the 
problem of the choice and fitting of models, and whether 
that choice should be guided primarily by least-squared fit 
criteria or by using other criteria.
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A simcle multiscale model . Instead of considering 
that observed spatial variation is the result of 
structural, local randomly correlated and random components 
as expressed by equation (3), let us now assume that 
randomly correlated variation can exist at all scales. 
Mandelbrot's Brownian fractal model (Mandelbrot 198E) is 
the ideal embodiment of a model in which spatial variation 
occurs at all scales. The simple Brownian model has 
several draw- backs in practice, however; it assumes that 
variation occurs at all scales in a self-similar way, and 
that the roughness of the variation Cthe value of the D 
parameter) is the same at all scales. Consideration of 
real data suggests otherwise (Armstrong 1986, Burrough 
1984) . Real spatial processes (omitting special cases such 
as cloud formation) seem to lead to spatial patterns in 
which the fractal D value varies with location and with 
scale (Mark and Aronson 1984) .

With this in mind, I developed a one-dimensional nested 
model of spatial variation that is an extension of equation 
(3), but within which the scales and the weights of the 
various components can be set independently (Burrough 
1983) . The value of 2 at point x is now given by

n 
Z(x) E C  '(x) } +  " (7)

where the  '(x) are a set of nested, spatially correlated 
random functions associated with scale i. As before, the 
 " term represents spatially uncorrelated random variation 
to take account of measurement errors and other essentially 
random, non-spatial sources of variation.

The model has since been programmed for interactive use as 
a personal computer 'game' and it allows the user to create 
one-dimensional displays of multiscale data by setting the 
ranges and weights of several nested random functions. The 
semivariogram is displayed together with the function 
(Figure 1). The computer game has proved invaluable for 
teaching students and others not familiar with spatial 
statistics how complex spatial variation can arise from 
nested random processes, and also for demonstrating the 
problems associated with under-sampling. The game allows 
transects from 80 to BOO points to be generated. 
Generating the same model several times for different 
transect lengths allows the user to see how an estimate of 
a semivariogram relies on sufficient samples.

If one can generate a transect from single random processes, 
it should be possible, in principle, to go the other way 
and to estimate the scales and weights of the contributing 
processes from the sample semivariogram. Simple geological 
transects gave good results (Burrough 1983), with the 
valuable by-product that the confidence limits and 
effective degrees of freedom of the fitted model could be 
calculated (Taylor and Burrough 198B; see also McBratney 
and Webster 1986). Alas, preliminary results of work with 
two-dimensional simulations suggest that decomposing multi- 
scale two-dimensional patterns is not so straightforward.
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Complex multiscale models. The one-dimensional 
nested model is only authorized For work in one dimension, 
so the approach must be modified when working in two or 
more dimensions. An alternative to Fitting a single, 
complex model is to choose several standard authorized 
models and to combine them to give an overall, complex 
model. The question then is on what grounds the separate 
models should be chosen. McBratney and Webster C19B6) 
demonstrate the use oF double models For semi-periodic soil 
variation in Australian gilgai, and For heavy metal 
concentration in soil in Scotland. In both cases they made 
use oF their knowledge about the physical soil processes to 
guide their choice oF the components oF the model. As with 
all models, the investigator needs to strike a balance 
between goodness oF Fit to the data and parsimony. 
McBratney and Webster C1986) suggest that the choice 
between a single scale model and a multiscale model Cor 
between two multiscale models) can be estimated by using 
Akaike's C1973) inFormation criterion which is estimated by

A = n InCR) + Ep CB)

where n is the number oF observations, p is the number oF 
estimated parameters and R is the residual sum oF squares 
oF the Fitted model. The model with lowest 'A is the best. 
Here I should like to remark that it is possible that the 
best Fitting model may not always make physical sense. 
For example, iF a best-Fitting semivariogram model returns 
an estimate oF the nugget variance €" that is considerably 
less than that known to be passible with the given 
laboratory technique, the results should be treated with 
caution.

Robust methods oF estimating the semivarioaram

When an essentially point process is superimposed upon a 
continuous process, estimates oF the semivariogram obtained 
by equation C6) may be heavy tailed because the intrinsic 
hypothesis is locally invalid. HcBratney and Webster Cop 
cit.D cite this problem when mapping soil potassium 
over a cow pasture contaminated with Faeces; we have noted 
similar problems in cracking clay soils in the Sudan and in 
soil pollution CRang et al 1987). Cressie and Hawkins 
C19903 proposed robust methods to deal with the problem oF 
heavy-tailed distributions; McBratney and Webster Cop cit.) 
suggest that the robust methods are oF most value when an 
underlying spatial process needs to be separated From the 
eFFects oF a contaminating point process.

DISCUSSION AND CONCLUSIONS

Host natural patterns oF variation contain contributions 
From processes operating at various scales. When a 
particular scale oF variation is dominant and obvious, 
standard mapping techniques will oFten suFFice. When 
several scales are important, it may be necessary to 
identiFy them beFore proceeding Further, using all 
available knowledge about the processes in question in 
order to make sensible decisions.
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Separation into 'natural' physiographic units may be a wise 
First move that can ensure that the basic assumptions of a 
mapping technique hold throughout a single area Ce.g. see 
Burrough 1986). Knowledge of spatial processes and the 
patterns they are likely to create may also assist when 
choosing both simple and complex models. The definite 
choice of complex models and the estimation of relative 
weights and scales of variation is made difficult by 
uncertainties in the estimation of semivariograms.

One way to avoid capturing too many levels of spatial 
variation is by tailoring sample spacing before mapping. 
There is now considerable evidence Ce.g. Oliver and 
Webster 1986, Webster 1985) that nested methods of 
sampling can provide useful estimates of the scales of 
spatial variation present in an area before mapping or 
sampling for the semivariogram commences.
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