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ABSTRACT

Previous work on automated line generalization has concentrated on the 
issues of computer efficiency for line thinning and the choice of a 
minimum number of critical points which must be retained in the 
generalized line. This study takes a different view of the problem 
of line generalization, emphasizing densification, rather than reduc 
tion, of the number of points describing a line for the purpose of 
optimizing representational accuracy. This new perspective raises 
the two following questions: 1) For a given map scale, what is the 
maximum number of describing points which can be retained without 
producing redundant information and 2) What is the relationship 
between line compaction rates and map scale reductions.

Given a plotter pen size, one may identify the smallest geographic 
artefact which may be visually recognizable. This, in turn, deter 
mines the minimum spacing of the digitized points describing the 
line. Finally, the concept of fractal dimension may be used to pre 
dict the maximum number of describing points for a given map scale, 
assuming statistical self-similarity for the geographic line.

The function governing the relationship between coordinate compaction 
rate and map scale reduction is particularly useful for the development 
of scale independent data bases, assuming that the points selected 
for small scale representations are always a subset of those used in 
larger scale representations. A linear relationship has been pro 
posed but preliminary results show that the coordinate compaction rates 
depend on the generalization algorithm being used, the fractal dimen 
sion of the line as well as the map scale reduction.

INTRODUCTION

Not long ago, a consulting firm was commissioned by the US Army 
Engineer Topographic Laboratories to perform an extensive review of 
automated methods for line generalization (Zycor, 1984). The results 
of the study were inconclusive, and gave only broad recommendations as 
to which generalization algorithms appear potentially more promising 
than others. The study, among others published in the last few years, 
reflects the urgency of formalizing the process of cartographic 
generalization so that it can be adequately automated (Jenks, 1979; 
McMaster, 1983; White, 1985).

Previous work on the evaluation of automated line generalization has 
concentrated on the issues of computer efficiency and the choice of 
a minimum number of critical points which must be retained while 
preserving the geometric and visual characteristics of a geographic 
line. This paper proposes a different perspective on the problem of 
line generalization by emphasizing the idea of densification, 
rather than reduction, of the number of points describing the line
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with the purpose of optimizing geometric accuracy. Because storage 
costs and computing time for line storage and line thinning will 
become less and less of an issue, I take the view that the original 
line information should be preserved as much as possible, given the 
physical and conceptual limitations of map scale and map purposes. 
If we equate maximizing geometric accuracy to maximizing information 
—- in this case the number of points describing the curve — then 
maximizing information implies minimizing data losses resulting from 
selection, displacement, simplification and deletion. This new per 
spective raises the two following questions: 1) For a given line and 
map scale, what is the maximum number of describing points which the 
map is able to bear, and 2) what is the relationship between line 
compaction rates and map scale reductions. The second question is 
raised in the context of a cartographic data base which is used to 
produce maps at different scales. It would be useful to know the 
relationship between scale and information compression since this 
relation could be implemented to determine automatically the number of 
describing points that should be kept to draw a line at a given scale. 
A further issue, of course, is the choice of the describing points 
which ought to be included. Although the focus of this paper is not 
the evaluation of generalization methods which most characteristically 
reproduce the geometry and the geography of a coast line or river, 
the method adopted for line generalization is a necessary considera 
tion in this research. Specifically, the relationship between data 
compaction rates and map scales may be seriously affected by the 
method adopted for compressing the data.

PREDICTING THE OPTIMUM NUMBER OF DESCRIBING POINTS

The digital representation of a cartographic line usually takes the 
form of a discrete set of points identified by their positions with 
respect to an arbitrary coordinate system. Successive points are 
joined by linear elements to make up the line. Thus, this discrete 
set of points constitutes the core information about the line. One 
important practical question for the cartographer is how large must 
this set be in order to ensure a proper description of the line. If 
one wants an accurate representation, then the number of describing 
points must be as large as possible for the particular scale at which 
the line is to be plotted. This, in turn, implies that the points 
made available in the cartographic data base have been digitized with 
a resolution equal or higher than the corresponding resolution of the 
plot.

Let the line width of the plotter pen be 0.2 mm. By definition, open 
meanders whose width or wavelength is smaller than or equal to 0.2 mm 
cannot be drawn open (Figure 1). This would also be the case for a 
raster plotter whose resolution is less than or equal to 127 dots 
per inch. Assume further that the separation between two line 
strokes may not be smaller than 0.2 mm. This is a conservative 
estimate to ensure visual separability, although I am aware that 
visual acuity or the corresponding angle of visual discrimination 
measured in minutes of arc may allow much finer separations, 
depending on the reading conditions. Thus, only meanders whose 
wavelength is equal or larger than 0.4 mm can be drawn clearly 
and distinguishably (Figure 1). As a result, the describing 
points of the line may not be closer than A = 0.4 mm from each 
other. This means that digitizing a map in a stream mode with 
a distance between digitized points less than 0.4 mm would generate 
superfluous points. It also means that any further reduction
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Figure 1. In A, the meander is closed in because its wavelength is no 
greater than the line width. In B, the meander is shown 
distinguishably. Its wavelength is no smaller than the line 
width plus the minimum separation allowed between line 
strokes.

of the original map to reproduce the line on a smaller map format 
implies a generalization such that no two consecutive points retained 
on the generalized curve are closer to each other than a distance 
A = 0.4 mm. For instance, a three-fold reduction would imply the 
systematic elimination of one of the points which is member of a pair 
of consecutive points whose distance is smaller than 0.4 x 3 = 1.2 mm 
on the original copy. The nth point or distance-traversed generaliza 
tion algorithm could be used to enforce such a condition when the 
selected points are to be a subset of the original points. Otherwise 
the walking generalization algorithm is a good candidate for the 
application of the minimum separation rule (Muller, 1987). It produces 
a new sequence of points which are equally distant from each other. 
In either case, collinear points may be subsequently removed in order 
to reduce the storage space taken by the results.

The above rule provides a guideline for maximum point density. It 
would be useful to predict the total number of describing points 
resulting from its application. The concept of fractal dimension may 
be used to calculate this number.

Assume the geographic line is a fractal, that is, each piece of its 
shape is geometrically similar to the whole. This property is called 
self-similarity (Mandelbrot, 1982). From Richardson, we have the 
equation (Richardson, 1961):

L(E) = e**(l-D) (1)

where e is the step length to measure the length of the line L(e), 
and D is a constant.

Let N be the number of steps e used to measure the line length. Then 
L(e) = N x e. According to (1):

N x e = e**(l-D)

InN + Ine = (l-D)lne

InN / Ine = -D

or D = InN / ln(l/e) (2) 

D is called the fractal dimension of the line. For all practical
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purposes, the value 1/e may be thought of as the number of steps of 
length e partitioning the base line (a straight line joining the first 
and last point of the curve's basic fractal generator, which, in the 
case of a geographic line, is the whole line itself).

Note that equation (1) can also be rewritten:

D = 1 - InL(e) / ln(e) (3)

A geographic line is said to be statistically self-similar when the 
relationship between InL(e) and ln(e) is linear. In this case, the 
limit (lnL(e + Ae) - lnL(e))/Ae where Ae -> 0, is estimated through 
regression analysis and is used to determine the fractal dimension in 
equation (3).

Furthermore, given the fractal dimension of a geographic line, one can 
determine the value of N:

InN = D x ln(l/e) 

N = e**ln(l/e) x D (4)

The steps of length e are the strokes which are used to draw the curve 
and, according to the minimum separation rule, may not be smaller than 
A, the minimum distance between the describing points of the curve. 
Assume again A = 0.4 mm. One can calculate the value of N to predict 
the maximum number of points which may be used to describe the line, 
depending on its fractal dimension and the size of the plot (Table 1).

TABLE 1. MAXIMUM NUMBER OF DESCRIBING POINTS (N)
DEPENDING ON FRACTAL DIMENSION (D) AND PLOT SIZE

PLOT SIZE = 40 mm; A = 0. 4 mm: e = 0.4/40; 1/e = 100

D
1.0
1.1
1.2
1.6
2.0

N
100
158
251

1,585
10,000

PLOT SIZE =160 mm;

D
1.0
1.1
1.2 
1.6 
2.0

A = 0.4 mm; e = 0.4/160; 1/e = 400

N
400
728

1,326
14,564
160,000

Note: Plot size is calculated according to
[(Xn - Xl)**2 + (Yn-Yl)**2]**i where (XI, Yl) and (Xn, Yn) 
designate the positions of the first and last points of the 
curve.

For illustration, the coast line of Banks in British Columbia was 
plotted on a pen plotter using the above approach, with pen

224



size = 0.2 mm, A = 0.4 mm, and N = 1226 points for a fractal dimension 
of 1.2145 and a plot size of fourteen centimeters (Figure 2).

Figure 2. The Banks coastline with 1226 points.

The original Banks coastline was digitized on a 1/50000 topographic map 
from the NTS series 103 G/8. The number of digitized points was origin 
ally 2759 and was reduced to 1266 using the walking algorithm and a 
walking step A = 0.4 mm. Since the Banks coastline is self-similar 
(Muller, 1986), the value of N could be predicted for any plot size. 
A plot size of seven centimeters, for instance, would require only 
528 describing points. The visual appearance of the plot in Figure 2 
may still be unsatisfactory to the reader, as many spikes and meanders 
appear closed in. This phenomenon is not directly related to the size 
of the walking steps, however, but to the morphology of the original 
line which shows many narrow spikes and inlets which are almost cir 
cular (Figure 3). The spike problem has already been mentioned else 
where (Deveau, 1985). Complex lines with narrow spikes and wide but 
circular meanders have a tendency to collide with themselves through 
the process of generalization. This is particularly true when a recur 
sive tolerance band algorithm, such as the one of Douglas and Peucker 
(1973), is applied. A possible solution to this problem would be to 
identify all line segments which are crossing over, colliding or 
potentially colliding (within a particular tolerance window) and 
displace the corresponding points. Research is currently in progress 
in this area.
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Figure 3. The spike (A) and the inlet (B) are partly or completely 
closed in.

Note that equation (4) provides the lower and upper limits of the num 
ber of points necessary to describe a line corresponding the lower 
(D=l) and upper (D=2) limits of fractal dimension (Table 1). When D 
tends toward a value of 2, the line tends to fill the space and thus 
requires a large number of points to be described (160,000 points 
for a point sampling resolution of 0.4 mm and a 16 cm plot size). The 
lower limit corresponds to a fractal dimension of D=l which charac 
terizes continuous, differentiable curves such as a circle or a 
straight line. In the later case, a blind application of the pro 
posed approach would be absurd, since a straight line only requires 
two points and any other point included according to the minimum 
separation rule would be redundant. Again, a check on collinearity 
for any straight segment of the line would remove this problem. 
Another limitation of the proposed approach is the fact that N can 
be predicted for self-similar lines only. Previous studies have 
shown that geographic lines are not always self-similar (Hakanson, 
1978; Goodchild, 1980).

RELATING DATA COMPRESSION RATES TO MAP SCALE

The relationship between scale and the quantity of information dis 
played on a map has been studied for quite some time. Several models 
to formalize this relationship have been proposed, among those the 
Radical Law or Principle of Selection by Topfer and Pillewizer (1966). 
For linear information, such as the data describing a geographic line, 
the Radical Law takes the simplest form:

N x M = constant (5)

when N would be the number of points describing the line and M the 
denominator of the map scale. Accordingly, a two-fold reduction of 
the original map translates into a two-fold reduction of the number 
of describing points. Renewed interest was recently expressed for 
this type of empirical rule, as it "introduces the possibility of a 
hierarchical method of line storage, whereby the number of points
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retrieved is directly related to the scale of the required map". (Jones 
and Abraham, 1986). This hierarchical structure, however, implies that 
the points selected for small scale representations are always a subset 
of those used in larger scale representations, which is not always the 
case.

The issue here is whether the Radical Law, which proposes a linear 
relationship between map scale reduction and data compression for line 
data, has practical value. An empirical test was conducted on two 
coastlines — one complex line (Banks, already mentioned) and one 
simpler line (Isidro, digitized from the 1/50,000, G12-B11 Gulf of 
California map). They were tested at four different scales, each scale 
being successively a two-fold reduction of the previous one. Three 
different generalization algorithms, including the moving average, the 
Douglas-Peucker and the walking algorithm, were used to represent the 
lines at the different scales, with generalization rates corresponding 
to the scale reduction rates (Figure 4 and 5). For the sake of

Figure 4. Scale Reduction and Corresponding Data Compression Using 
Different Generalization Algorithms on Banks Coastline. 
Problem areas in the smaller scale representations are 
highlighted by circles.
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clarity, the number of describing points on the largest representations 
was purposely reduced in order to minimize the risk of line collision 
and afford a better comparison with the smaller scale representations. 
For all the Banks tests, the smaller scale representations show new 
problem areas (closing spikes and closed loops) or a worsening of the 
ones already present-on the larger maps (Figure 4). Note, however, 
that the test using the Douglas algorithm gives the worst result. This 
suggests that the Radical Law is less suited for this generalization 
algorithm than for the others. The Isidro tests, on the other hand, 
were all successful, demonstrating that the Radical Law is applicable 
for simpler lines (Figure 5). This small experiment shows that the form 
of the relationship between data compression and scale reduction of 
linear elements is more complex than the one suggested by Topfer and 
Pillewizer and is a function dependent on line complexity and method of 
generalization as well. In the case of statistically self- 
similar geographic lines, one could incorporate the effect of

Figure 5. Scale Reduction and Corresponding Data Compression Using 
Different Generalization Algorithms for the Isidro 
Coastline.
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complexity by suggesting the following relation:

Nl = NO [(MO/M1)**D] (6)

where D is the fractal dimension of the line, NO and Nl are the number 
of describing points on the larger and the smaller scale maps, MO 
and Ml are the corresponding scale denominators. In the case of a 
space filling curve, the reduction in the number of describing points 
would correspond to the reduction in map area:

Nl = NO [(MO/MI)**2] (7)

Although this relationship may be more suited for complex curves, its 
successful application depends upon the assumption of an appropriate 
point density on the original source map.

Furthermore, one could incorporate the minimum separation rule in 
equation (5):

Al = AO [(Ml/MO)**D (8)

when AO and Al are the minimum spacing between the describing points 
on the original map and the new derived map after reduction. This 
would provide a rule for generalization as well as optimize point 
density for any particular scale. It could be easily applied in a 
hierarchical data base where the original describing points on the 
source document were captured through stream mode digitizing with a 
constant AO value. The points selected in a smaller scale representa 
tion would be a subset of the original describing points according 
to the new minimum separation value Al.

CONCLUSION

A few guidelines for consideration prior to the process of line 
generalization have been proposed. There is the view that one ought to 
maximize the number of points describing the line for any particular 
scale. A minimum separation rule between describing points may be set 
as a function of plotting resolution and visual discrimination. For 
statistically self-similar geographic lines, the total number of 
points required to describe the curve according to the minimum 
separation rule may be predicted. The walking algorithm was applied to 
illustrate this rule. Furthermore, it was found that the Topfer and 
Pillewizer's Radical Law which suggests a linear relationship between 
data compaction and map scale reduction was not suited for complex 
lines. In the case of the self-similar lines, a relationship including 
the fractal dimension was proposed instead. A problem which deserves 
further investigation is the tendency of a complex curve to collide 
with itself through the process of generalization. A purely algorith 
mic solution to the problem of line generalization does not appear 
satisfactory. Cartographic generalization is not only a reduction of 
the amount of information for the sake of preserving map readibility 
(Salichtchev, 1977). Generalization also involves an understanding of 
the meaning of the information which is being generalized. Thus, there 
is a need to add some "intelligence" to the computer generalization 
process to insure that line segments are not colliding (topological 
integrity) and that significant geographic features are preserved 
(geographical integrity,) as would be case if the line was generalized 
by a cartographer using his geographic knowledge.
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