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ABSTRACT

New interpolation methods are presented, yielding results which are 
closer to manually interpolated lines than classical interpolation 
methods. By better modelling the line structure, these methods do 
not need the definition of breakpoints, the definition of which is 
necessary due to shortcomings in the classical methods,

CLASSICAL LINE DRAWING

In automated cartography it is often required to interpolate lines or 
surfaces in between given points. In one dimension this operation 
can readily be visualized: Given a set of points (x,z), find the 
interpolated value K at location x. Various methods are in use for 
this purpose. One may use local linear interpolation in between 
neighbouring control points, local polynomial interpolation, spline 
interpolation, prediction and moving average rules or other methods. 
These methods can usually be related to each other, as was shown by 
Frederiksen et al, 1984. Usually these methods use smooth 
interpolation, minimizing the average curvature of the line.

Take for example the cubic spline. It minimizes the function
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In order to understand the behavior of this mathematical spline, we 
may think in its physical analogue, the draftsman's spline. In 
drawing a smooth curve through a number of points, the draftsman 
uses a thin elastic rod forced to pass through the locations of the 
points. The shape of this mechanical spline is such that it has a 
minimum bending or curvature. Consider now points (x,z) in figure
1.1. representing a step function. Both the physical (draftsman) 
spline and the mathematical spline cannot properly describe the 
abrupt changes in height values and tend to oscillate heavily. In 
order to get reasonable results, one must introduce two "break 
points" where the tangent (slope) of the curve is discontinuous, and 
interpolate independently within the resulting three sections, figure
1.2.
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Figure 1.1: Spline interpolation of a step function
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Figure 1.2: Spline interpolation with break points

Similar considerations are valid for other interpolation methods (finite 
elements, Prediction method, local interpolation).

The necessity of defining break points (or break lines in 
two-dimensional interpolation) may thus be seen as due to the 
deficiency of the interpolation methods to properly model the terrain. 
The economic consequences of this deficiency are considerable: in 
modern DEM (Digital Elevation Model) applications one spends on the 
average most of the time digitizing break lines in order to get an 
acceptable result (see figures 1.3 to 1.5, ref: Kubik, 1985). It thus 
pays off to investigate other interpolation methods which reduce the 
need of break point and break line definition.
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Figure 1.3: Contour lines of test area (5 meter contours) 7,964 
points digitized, 90 minutes measuring time.
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Figure J.4: Results of HIFT profiles of lOOrri spacirigs; characteristic 
profile points selected by operator; no breaklines 
(1,162 points digitized, 43 minutes measuring time)
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Figure 1.5: Results of HIFI profiles of 100m spacing operator
selected points; breaklines included

(1,121 profile points and 2,542 breaklines points digitized, 96 minutes
measuring time)
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NEW INTERPOLATION METHODS - 
MINIMIZING OTHER DERIVATIVES

As concluded in the earlier chapter, the classical interpolation 
programmes use relatively inflexible interpolation functions. By 
minimizing the average second derivative of the interpolation 
function, these methods (approximately) describe the bendings of a 
mechanical spline or plate, but not the undulations of a cartographic 
line. As an alternative, we may try to model the behavior of this 
line by the differential equation

z(") = £ (2)

where (n) denotes the n-th derivative of the values z, and E is an 
independent random variable (white noise). Here n may also be 
non-integer. In that latter case this fractional n-th derivative is 
defined by continuous interpolation into the integer differences 
(Frederiksen et al, 1984).

This differential equation (2) may now be chosen as a model for 
interpolation, for instance in L-spline or finite element interpolation. 
The proper functional to be minimized is then

n

The results of the L-spline interpolation are indentical to the results 
of the Wiener prediction method using a proper variogram or 
covariance function, as it was shown already in 1971 by Kimeldorf 
and Wabha (see also Dolph and Woodbury, 1952 and Kubik, 1973).

Figure 2.1 shows examples of interpolation according to these new 
principles. The digitized points represent the profile of a well 
known cartographer. For n = 1 we obtain piecewise linear 
interpolation (linear spline), for n = 2, piecewise 3rd degree 
interpolation (cubic splines) and for n between 1 and 2 we obtain 
interpolation forms which properly model break points in the terrain 
profile while preserving relative smoothness in the other profile 
sections. From extensive analysis of various terrain forms, the 
authors found n values in between 1.2 and 1.4 as most appropriate 
for use in DEM applications. Manmade cartographic lines are modelled 
on the average with a slightly larger n value. Algorithms for online 
determination of the proper n value for individual lines were 
developed by the authors to enable proper interpolation according to 
the line structure inherent in the digitized points (Kubik and Loon, 
1985).

1 The coefficient n can be derived from analysis of the cartographic 
line, using the variogram or spectrum concepts, see (Frederiksen et 
al, 1984).
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Figure 2.1: Interpolation with fractionals derivatives; use of
different values of n for interpolation

NEW INTERPOLATION METHODS - 
MINIMIZING OTHER FUNCTIONALS

The above idea can be further generalized by minimizing well chosen 
functions of the derivatives, instead of their square sum:

J = f dQ -> mm.

In order to illustrate this principle, we consider the simple 
functionals

; 0 < p < 2

minimizing the integral of non-integer power of the second derivative 
of the line.

The numerical interpolation methods for solving (5) are analogous to 
the methods described in Chapter 2. In order to demonstrate the 
effect of this class of interpolation principles, we choose again the 
profile of a well known cartographer (Figure 3.1). Classical cubic 
spline interpolation (using p = 2) yields unsatisfactory results and 
would need the definition of numerous break points to yield an 
acceptable result. 3.4 shows the interpolation results for decreasing 
values of p. Notice that the profile becomes more recognizable for 
decreasing values of p, with an optimal choice of p equal to 1.2. 2 
Lower p values yield an increasingly rough profile, with piecewise 
linear interpolation obtained for p = 1.

2 This optimal value of p can also be derived from covariance or 
spectral analysis of the sample points.
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Figure 3.1: Interpolation with fractional 
powers; use of different values of P for 
interpolation.

Thus, with the principle (5), we have obtained a new transition of 
interpolation forms from a cubic spline to a linear spline, different 
from Chapter 2. In both cases, no break points were needed to yield 
realistic interpolations, which are close to the lines drawn by 
draftsmen.

Obviously, other functionals (4) may be chosen, which may give both 
worse and better interpolation results. However, proper use of these 
new principles allows a very effective interpolation of cartographic 
data, and considerable savings in data capture, as compared to 
classical methods.

FINAL REMARKS

Algorithms for rapid interpolation according to these new principles 
have been developed by the authors, and the methods were fine 
tuned for various classes of line interpolation (and approximation). 
As proposed in this paper, adaptive interpolation strategies are 
possible, taking into account the internal structure of the data set. 
However, much work still is necessary in order to fully understand 
the potentials of these new classes of interpolation methods. In 
particular, online data capture intertwined with interpolation appears 
desirable in order to help the operator in the digitization (or 
measuring) process and in understanding the nature of the 
interpolation function. This approach will allow a very considerable 
reduction of data capture time as compared to today's process.
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