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ABSTRACT

Orthogonal polynomials (OP) are used to estimate polynomial 
coefficients and root-mean-square deviations (RMSD) for 
gridded elevation data wjthin quadtree subquadrants. These 
subqua.drants are recursively subdivided into four if the 
RMSD exceeds some threshold. Polynomials of orders one 
through six are fitted to three 256 by 256 OEMs, using RMSD 
thresholds of 1, 3.5, and 7 meters. The OP-quadtrees 
required from 9 to 20 percent of original grid space when 
the RMSD was set at 7 meters, but between 48 and 99 percent 
of that space for an RMSD of 1 meter. For a fixed RMSD, 
the total space required appears to be independent of 
polynomial order. If this effect is true in general, the 
obvious implication is that order does not matter. In that 
case, low-order polynomials could be used, saving 
computation time. When order is held constant, the space 
required by the OP-quadtree appears to be an inverse power 
function of the RMSD criterion.

INTRODUCTION

A digital elevation model (DEM) can be defined as any 
machine-readable representation of topographic elevation 
data. A major issue in DEM research is the selection of an 
appropriate data structure (Mark, 1979). The most 
frequently-used data structure for OEMs is a regular square 
grid. One weakness of the grid data structure is its 
inherent redundancy, and the large amount of computer 
resources needed to achieve a given accuracy. The grid 
size must be sufficiently small to capture the smallest 
feature of interest in the entire study area, and to define 
the boundaries of larger features to some required level of 
precision. This implies that cells in most of the region 
will be smaller than needed; in other words, there will be 
too many cells.

In an attempt to address this problem, alternative data 
structures for OEMs have been designed. The most widely 
used of these is the triangulated irregular network (TIN),
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which represents the terrain by a triangulation on a set of 
points chosen to represent the surface (Peucker and others, 
1978). Whereas TIN are being adopted as a DEM data 
structure within several of the leading commercial 
Geographic Information Systems (CIS), the TIN structure is 
at a disadvantage in terms of data collection. This is 
because devices are now available to produce very dense 
regular grids directly from aerial photographs.

At least two strategies for the more direct compression of 
grid DEMs have been developed. In one approach, grids of 
varying spatial resolution are employed; in the other, 
square or rectangular patches of a fixed size are 
approximated by polynomials or other mathematical functions 
requiring fewer coefficients than there were grid points. 
Quadtrees are a spatial data-structure which provides a 
convenient basis for handling variable resolution data, and 
allows the variable-resolution and polynomial-patch 
approaches mentioned above to be combined.

In the present study, orthogonal polynomials are used as an 
efficient way to estimate polynomial coefficients for 
gridded data; we call the result the QPrguadtrgje of the 
DEM. Polynomials of orders one through six were fitted to 
each of three 256 by 256 DEMs, using root-mean-squared 
deviation (RMSD) thresholds of 1, 3.5, and 7 meters. Also, 
integer RMSDs from 1 to 10 were evaluated for 3rd-order 
polynomials for the three study areas. Empirical results 
are presnted, and the implications of these results are 
discussed.

BACKGROUND

Polynomial Patch Approximations of Topographic Surfaces. 
Junkins, Jancaitis, and co-workers applied polynomial patch 
approximations to DEM surfaces (Junkins and others, 1972; 
Jancaitis, 1977). They were primarily concerned with the 
handling "noisy" data from the U. S. Army's UNAMACE image 
correlation system. Their approach was to divide the 
surface into small square patches, and to fit low-order 
polynomials (quadric surfaces, z = a + bx + cy + dxy) to 
the elevations within these patches. The patches were 
small, and the resulting quadric surface was used 
regardless of how large the residual variance was. (For 
noisy data, large residuals are presumed to represent 
errors which should be removed from the data.) Because 
this method produces discontinuities along patch 
boundaries, Jancaitis 1 group used a weighting function 
approach to blend together adjacent patches, eliminating 
undesireable breaks in decompressed data.

Quadtrees.
The quadtree is a data structure which is based on a 
regular decomposition of a square image into quadrants and 
subquadrants. Basically, the quadtree can be constructed 
recursively, with a "stopping criterion" which indicates 
whether a subquadrant should become a terminal (leaf) node 
in the quadtree, or should be subdivided. In most quadtree 
research, the stopping criterion is uniformity, that is, a
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subquadrant is subdivided if it contains any variation.

There is a major problem with the strict application of 
quadtree concepts to topographic data: it is unusual to 
find sets of four mutually-adjacent cells which are of 
identical height. In order to be space-efficient, the 
quadtree concept must be adjusted. While the recursive 
spatial structure of the quadtree is retained, the stopping 
criterion can be modified to include surface approximation 
within quadrants (Martin, 1982; Chen and Tobler, 1986). A 
mathematical function is fitted to the heights within a 
square subquadrant. Then, whenever the RMSD for the 
elevations within a subquadrant is larger than some 
predetermined criterion, the procedure is applied 
recursively to each subquadrant of the current square.

Quadtree-based Surface Approximation.
Martin (1982) used a quadtree-based method for polynomial 
approximation of DEM data. His procedure fitted a linear 
equation (z = a + bx + cy) to all elevations within a valid 
quadtree subquadrant. If the RMSD was less than some 
threshold, the 3 coefficients of the plane were used to 
represent elevations within the subquadrant. Otherwise, 
the subquadrant was split into its 4 children, and the 
procedure was recursively applied to the children. 
Clearly, the depth of quadtree subdivision, and thus the 
quantity of data to be stored,, will increase if a low 
threshold is chosen for the RMSD.

In a similar study, Chen and Tobler (1986) fitted five 
mathematical functions to quadtree subquadrants. The 
functions chosen were: (1) the mean surface (equivalent to 
a least-squares polynomial of order zero); (2) a maximum 
surface (highest elevation in the quadrant); (3) a minimum 
surface; (4) a "ruled surface," a hyperbolic paraboloid of 
the form: z=aQQ+a1 QX+aQjy+a-^-jxy; and (5) a quadric surface 
of the form z=aQQ+a-L1 xy+a20X +aQ2v • Tne coefficients of 
functions (4) and (5) were determined by substituting into 
the equation the coordinates of the four corners of the 
quadrant. Thus the equations pass through the corners 
exactly, and are not influenced by other cells in the 
quadrant. Chen and Tobler evaluated goodness of fit 
according to maximum absolute deviation, rather than RMSD.

The advantage of their approach over a least-squares or 
orthogonal polynomial method employed in this paper is 
largely computational efficiency. Furthermore, since the 
values stored to represent the surface are just elevations, 
they can be represented using two bytes each; in contrast, 
polynomial coefficients must generally be represented by 
floating-point numbers, needing at least 4 bytes each. 
Chen and Tobler (1986) computed space requirements and 
running times for two topographic samples, each a 128 by 
128 grid of 50 meter cells; they did not discuss the source 
of their DEM data. Each surface was tested with maximum- 
error tolerances of 2, 6, and 10 meters. Their test 
program proceeded recursively, and counted quadtree leaves. 
The number of leaves was then multiplied by 2 bytes per 
coefficient plus 2 bytes for the location key (a total of 4 
bytes per leaf for functions 1, 2, and 3, and 10 bytes per
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leaf for 4 and 5). Chen and Tobler found that the 2-meter 
tolerance produced quadtrees requiring more space than the 
original grid (2 bytes per elevation) for every function 
and for each of the topographic samples. For the 10-meter 
tolerance, the "ruled surface" quadtrees required from 
50.7% to 84.4% for the more smooth terrain sample, and from 
53.3% to 127.9% for a more rugged area. For every 
combination of tolerance and topography, the ruled surface 
required the least space of all functions tested.

Orthogonal Polynomials.
When data are acquired at equally-spaced intervals, 
orthogonal polynomials provide a computationally efficient 
way of calculating the coefficients of a polynomial (trend 
surface) function. Their use in determining least squares 
coefficients requires substantially less computation 
because matrix inversion is not required as with 
traditional regression analysis. As a result, these 
polynomials have long appeared in trend surface analysis 
(Simpson, 1954; Grant, 1957; for an overview, see Krumbein 
and Graybill, 1965). One interesting property is that when 
variables of higher degrees are added to the function, low- 
order components do not have to be recalculated because the 
polynomials are independent (hence the term "orthogonal"). 
For an interesting description of the use of orthogonal 
polynomials in the one-dimensional case, see Fisher (1973) 
or Krumbein and Graybill (1965).

For a given sample size N, an N by N matrix, hereafter 
referred to as the "orthogonal matrix", can be constructed 
with independent columns that represent individual 
orthogonal polynomials. If these columns are numbered 0 to 
N-l, then column i contains the values of the orthogonal 
polynomial for determining the coefficients of the trend 
surface variables for degree (exponent) i. Thus, column 0, 
which is always the unit vector, would be used to calculate 
the value for a zero-order polynomial equation, resulting 
in the mean of the dependent variable. In addition, the 
orthogonal polynomial of column 1 would be used to 
determine the linear trend in the data; column 2 would be 
used for the quadratic component. In the same manner, the 
coefficients for the trend surface function can,be computed 
up to degree N, when a perfect fit is made between the data 
and the regressive model. DeLury provides a table of these 
orthogonal matrices up to K=26 (DeLury, 1950). In 
addition, DeLury also provides a method for generating the 
orthogonal matrices for larger values of N, but the 
integral values soon become too large to handle using 
standard variable types on many computers.

Orthogonal polynomials also can be applied to two- 
dimensional data. With two dimensions, an N by M data 
matrix is pre- and post-multiplied by the orthogonal 
matrices for sample size N and M respectively, thereby 
allowing the method to be applied to a rectangular grid. 
However, in the present case, N and M will always be equal, 
and will be 2 raised to the power of the level. Each value 
in the resultant matrix, henceforth referred to as a G, is 
divided by the product of the total sum of squares (SOS) 
for the two orthogonal polynomials that correspond to the
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value's position in the matrix, producing a new matrix, B.

The matrix B contains the individual D.J.; coefficients for 
the trend surface function, with the posrtion in the matrix 
indicating the appropriate independent variable; the row 
represents the exponent of the horizontal (X) component and 
the column the exponent of the vertical (Y) component. For 
example, the coefficient for position row=2, column=3 in 
the B matrix would be associated with the independent 
variable X2Y3 of the trend surface equation. It should be 
noted that the bj-j coefficients cannot be interpreted as 
the marginal effect on the dependent variable as is the 
case with the traditional b r regression coefficients. 
However, the b^- coefficients can be used to determine the 
appropriate oroer of the polynomial function, and can be 
used to generate the best approximate surface for the 
original elevation data. Krumbein and Graybill (1965) 
provide an excellent procedural description of the 
utilization of orthogonal polynomials for a two-dimensional 
trend surface analysis.

In this study, the criterion for deciding whether a 
specific polynomial function fits a matrix of data will be 
based on the square root of the mean square deviation 
(RMSD) between the polynomial surface and the original 
data. Computation of the RMSD requires the calculation of 
matrix Z which contains the corrected sum of squares 
associated with each independent variable. With orthogonal 
polynomials, the calculation of this matrix is straight 
forward. First, each element of matrix G is squared. Then 
each value is divided by the product of the SOS of the 
appropriate orthogonal polynomials in the manner described 
above. Each value within the resultant Z matrix is the 
corrected sum of squares attributed to an independent 
variable. Again, the row and column position of a value 
within the matrix indicates the appropriate independent 
variable. Given the order of a trend surface function, the 
sum of all values in the Z matrix whose row and column sum 
is less than or equal to this order constitutes the 
corrected SOS attributed to the trend surface equation. 
The sum of the excluded values reveals the residual SOS, 
which is divided by the sample size and raised to the 1/2 
power to determine the RMSD.

METHODS

As noted above, application of the method of orthogonal 
polynomials to a grid of N by N cells produces a matrix of 
N2 coefficients from which the surface can be recreated 
perfectly (except for truncation and roundoff errors 
resulting from machine representations). The quadtree- 
based algorithm computes the orthogonal polynomial 
coefficients (OPC) for a quadrant, and then uses a decision 
rule to determine whether the current quadrant should be 
saved or whether it should be recursively subdivided.

Various strategies for selecting a subset of the OPC, and 
for assessing whether the resulting fit is 'adequate', lead 
to different algorithms. In the current study, we used a
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fixed polynomial order for each run. Because of 
limitations on computer time and space, the orthogonal 
matrix for N=32 could not be generated; thus, in our 
experiments, the quadtree subdivision begins with level-4 
nodes (16 by 16 subgrids). Then, the SOS terms associated 
with all OPC with exponents less than or equal to the 
polynomial order are added together and used to compute 
residual RMSD. If this RMSD is greater than the specified 
maximum allowable error, the data matrix is divided into 
four subquadrants, and the fitting procedure is applied 
recursively to each of these. The program does not 
subdivide the data matrix if the RMSD is less that the 
threshold, or if the data matrix is too small to calculate 
a surface function of the specified order.

As noted above, a polynomial trend surface .of order 0 is 
the sum of polynomial terms of the form a^jX 1y3, such that 
i + j<.0. It can easily be shown that the total number of 
terms in such a polynomial is equal to [ (0+1) (0+2) ]/2. 
This is the number of degrees of freedom available for 
least-squares estimation of the trend surface, and also 
represents the minimum number of observations needed to 
compute the polynomial. However, in order to use the 
method of orthogonal polynomials, a matrix of size 
(0+1) by (0+1) must be computed, requiring a data grid of 
side-length 0+1. This places a more severe restriction on 
the possible polynomial orders which can be computed for 
small matrices: the maximum order is one less than the side: 
length of the data square. Table 1 relates quadtree 
levels, space requirements, and possible polynomial orders.

TABLE 1: QUADTREES PROPERTIES AMD 
ORTHOGONAL POLYNOMIAL STATISTICS

1) quadtree properties:

quadrant level 012345
pixels 1 4 16 64 256 1024
bytes 2 8 32 128 512 2048

2) orthogonal polynomial properties:

order 1
OP terms 3
bytes for OPC* 14
minimum level** 2

2
6

26
2

3
10
42
3

4
15
62
3

5
21
86
3

6
28

114
3

* calculations assume that each coefficient is 
stored as a floating-point number requiring 4 
bytes, and add 2 additional bytes for the location 
key

** minimum level for which OPC require fewer bytes of 
storage than the original integer grid
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We noted above that Chen and Tobler (1986) counted the 
total number of quadtree leaves of any size (level) needed 
to represent the surface to some pre-determined accuracy, 
and then multiplied that number by the number of bytes 
needed to represent one quadrant of the current equation. 
For some surfaces and tolerance values, Chen and Tobler 
found that some quadtrees required more storage space than 
the original grids. However, it seems more appropriate to 
store a hybrid structure, counting a leaf-node only when 
the surface function requires less space than would the 
original grid over the same quadrant. In the present 
study, we did not subdivide a subquadrant if the OPC for 
its four children would require more bytes of computer 
storage than would the integer elevations of the grid cells 
within the patch. Minimum space-efficient levels for each 
order of OP are given in Table 1. Because our objective 
was to examine space-efficiency, our program simply counted 
the number of leaves of each level which are needed to 
represent the surface; in an actual application, the 
appropriate elements of the coefficients matrix B would be 
stored along with a key-number denoting the location of the 
quadrant, either in a pointer-based quadtree or a linear 
quadtree.

TERRAIN SAMPLES

We applied the methods discussed above to three topographic 
samples. Each sample was a 256 by 256 sub-sample of a 
U. S. Geological Survey 7 1/2 minute digital elevation 
model (Elassal and Caruso, 1983). The DEMs were collected 
as by-products of orthophoto quadrangle mapping, and all 
three have a grid cell size of 30 meters and a vertical 
height resolution of 1 meter. The two Pennsylvania samples 
were collected using a Gestalt Photo-Mapper II (or GPM-II; 
Swann and others, 1978; Elassal and Caruso, 1983); the 
sample from Oregon was produced using a semi-automatic B-8 
stereo-plotter (Elassal and Caruso, 1983). Possible effects 
of data collection methods on DEM characteristics were 
discussed by O'Neill and Mark (1985).

The three test areas represent distinctly different types 
of topography, and have been used in previous DEM studies 
of fractals (Mark and Aronson, 1984) and topographic slope 
(O'Neill and Mark, 1985). The Blair's Mills (Pa) 
quadrangle is located, in the Appalachian Mountains. Strong 
structural control has produced a series of aligned ridges 
and valleys oriented in a northeast-southwest direction. 
In contrast, the Keating Summit (Pa) quadrangle represents 
topography developed in the flat-lying sedimentary rocks of 
the Appalachian Plateau, showing little if any sign of 
structural control. Finally, the Adel (Ore) quadrangle is 
from the Basin-and-Range topographic province in south 
eastern Oregon. In this area, the steep fault scarps and 
associated canyons contrast sharply with the gently-sloping 
plateau above and the flat valley floor below.
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RESULTS

As noted above, the program we used began by breaking each 
256 by 256 grid into 16 by 16 (level 4) subgrids. Then, 
for each of these, a surface of the current order was 
fitted to the data; if the RMSD was larger than the current 
threshold, the square was divided into four 8 by 8 squares, 
and the procedure was applied recursively. Table 2 
presents the main results of the 54 runs of the program (3 
DEMs tiroes 3 RMSD thresholds times 6 polynomial orders).

As expected, for each order and for each DEM, the space 
required declines as the RMSD threshold increases. 
Unexpected was the apparent independence of space required 
and polynomial order (for fixed RMSD and DEM): each column 
in Table 2 contains values that are relatively constant. 
(We do, however, note that third-order polynomials were 
best in 4 cases, whereas first- and sixth-order polynomials 
were never the most space-efficient.) The fact that space- 
efficiency is almost independent of polynomial order 
suggests that, for a given RMSD threshold, the DEM has a 
fixed "information content", which can be expressed in 
bytes. The DEM can be approximated by many small patches 
containing simple surface polynomials, or by a smaller 
number of more complicated surfaces, and the two effects 
seem to cancel out. This should be the subject of further 
investigation.

The other pattern evident in Table 2 is that, for the 1- 
roeter RMSD threshold, the Adel sample required far less 
space than the others. This might be in part due to the 
nature of the terrain, which (as noted above) consists of 
fault scarps, flat valley floors, and fault dip-slopes in 
the form of inclined planes. However, we believe that the 
difference is primarily due to the short-scale error 
characteristics of the data, which are chiefly dependent 
upon the method used to collect the data. The Gestalt

TABLE 2: SPACE REQUIREMENTS* FOR THE OP-QUADTREES 
FOR POLYNOMIAL ORDERS 1 THRU 6

Quadrangle: Adel 

RMSD : ] . 0 3.5 7.0

Keating Summit 

1.0 3.5 7.0

Elair's Mills 

1.0 3.5 7.0

1
2
3
4
5

57.7
53.3
53.6
48.0
50.0

24.6
20.3
19.7
19.8
21.3

31.3
10.0
9.5

12.4
16.8

96.3
90.8
99.3
94.5
88.5

37.6
28.8
28.0
2.4.5
20.2

16.3
12.9
9.6

12.3
16.8

96.6
93.9
98.4
97.4
88.7

38.3
36.7
30.8
32.8
33.2

13.2
11.3
11.5
12.5
16.8

60.3 24.1 22.3 92.2 23.6 22.3 94.7 31.9 22.3

* figures in table are required space as a percentage 
of space required by the original grids
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Photo-Mapper (GPM-II) collects what is essentially a tree- 
top surface. The model contains error with a magnitude of 
about half the average tree height, and with a local 
structure similar to white noise. Such uncorrelated errors 
make it almost impossible for simple polynomials to 
approximate local areas when the maximum RMSD is set at 1 
meter. The effect declines with increasing RMSD (see also 
Table 3, below). We expect that similar results would 
apply for other DEM data collected using the GPM-II.

In order to provide a more detailed evaluation of the 
interaction between maximum RMSD and space-efficiency, we 
fitted third-order polynomials to each of the three DEM 
samples using RMSD thresholds ranging from 1 to 10 meters; 
the results of these evaluations are presented in Table 3. 
The relation between space and RMSD for each DEM appears to 
be well-approximated by a power function (straight line on 
log-log graph paper). These curves could be compared to 
those generated for other DEM data structures, such as TINs 
prepared to approximate grids to within some pre-defined 
tolerance.

TABLE 3: SPACE REQUIREMENTS* FOR THIRD ORDER POLYNOMIALS

maximum
RMSD (m)

1
2
3
4
5
6
7
8
9

10

Ad el

53.6%
31.1%
22.2%
16.9%
14.0%
11.2%
9.5%
9.1%
8.5%
8.2%

Blair 's
Mills

98.4%
74.9%
39.6%
25.0%
17.9%
14.2%
11.5%
10.0%
9.1%
8.6%

Keating
Summit

99.3%
54.1%
31.9%
2-1. 4%
17.4%
12.1%
9.6%
8.7%
8.3%
8.2%

* figures in table are required space as a percentage 
of space required by the original grids

SUMMARY

For a fixed RMSD, the space requirements appear to be 
relatively independent of polynomial order. High-order 
polynomials fit large regions more easily, and thus the OP- 
quadtrees have fewer leaves; however, each leaf requires 
more space for the polynomial coefficients, and the two 
effects seem to cancel. If this can be shown to be true in 
general, the implication is that the order used does not 
matter. In that case, low-order polynomials should be 
used, since they can be computed more efficiently. When 
order is held constant, space requirements for the OP- 
quadtree appear to be an inverse power function of the RMSD 
criterion for low values of it (RMSD < 10 meters).
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