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ABSTRACT

A map's topology and its geometry are grounded in the 
mathematical theory of cellular structures on continuous 
surfaces. We say that the map's geometry, the actual 
physical positioning of the features on a surface, is a 
realization of the map's topology, which refers to the 
relative positioning of the features. A single topology 
has many geometric realizations, any two of which are 
related by some "rubber-sheeting transformation." Any 
computerized implementation of the geometry of a map, 
however, requires a discrete approximation of the point 
data of the map and a round ing of geometric positioning 
of those points. The implicit or explicit rounding 
required will re-position the points, which may in turn 
change the topology and give rise to topological 
inconsistencies or topological uncertainties.

In this paper we review the mathematical model of a map 
as a continuous surface with cell decomposition, and we 
examine a discrete location/1inear submodel which 
correctly models the computer's approximation to the 
continuous surface model. We describe the submodel, its 
relation to the larger model, special limitations of the 
submodel, and special useful properties of the submodel. 
In particular, we derive useful measures of stability of 
realizations of the submodel.

Because linear features in the submodel are straight line 
segments, the stability of the topology (or the 
robustness of the geometry) of a particular 
discrete-location/linear map realization turns out to be 
simply the upper bound distance that any line-segment 
endpoint may move in any direction and still not change 
the topological structure of the map. Looked at in the 
more general context, robustness is a geometric measure 
of the closeness of features on a map. Robustness is 
also a measure of the closeness of other maps having a 
one-to-one correspondence of point features, but having 
different topologies. This paper describes how to 
compute the geometric robustness of a particular 
geometric realization of a map and how to improve the 
topological stability. It also examines changes in 
stability that occur under various map update routines 
and transformation procedures. It proposes means of 
modifying or restricting those routines and procedures to 
preserve stability or to recover stability when it is 
diminished by those procedures.
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INTRODUCTION

The Mathematical Model.
A standard or usual mathematical model for a map is the 
two-dimensional manifold or surface with a finite 
cellular decomposition. A two-dimensional manifold is a 
continuous, infinitely subdividable space such that every 
non-boundary point has a neighborhood that looks like a 
small disk in the plane, and every boundary point has a 
neighborhood that resembles a half disk. A cellular 
decomposition of a manifold is a partition of the space 
into mutually disjoint subsets, each of which is 
topologically equivalent to a point, an open interval, or 
an open disk (possibly with holes*). The partitioning 
subsets are called cells; and those cells which consist 
of a single point are called 0-cells; those which are 
topologically equivalent to an open interval are 1-cells; 
and the two-dimensional disks are called 2-cells. 
Partitioning means that every point in the map sheet 
belongs to exactly one of the cells in the finite 
collection. In other words, the union of the cells 
exhausts the space; and the cells themselves are 
pairwise disjoint. In order to guarantee that the cells 
do not overlap and that they fit together properly, the 
cells are defined in such a way that their boundaries do 
not belong to the cells themselves, but instead are made 
up of cells of lesser dimension. The cells must fit 
together with a plane-like smoothness and fill up the 
space. The rules for fitting together constitute the 
basis for the topological edits. Those rules are (1) 
combinatorial (i.e. describe finite relations among 
finite sets), and hence are machine-verifiable and (2) 
form a complete set of axioms for the theory of cellular 
structures on surfaces.

The Submodel.
A submodel of a mathematical model places additonal 
constraints on the model components, in our case the 
cells; and thereby, it reduces the number of legitimate 
instances of the model that must be considered.

The 1-cells in the usual topological manifold model are 
arcs or smooth curves. In practice, 1-cells are stored 
and displayed as polygonal lines, or polylines. The 
practice is based upon mechanical and mathematical 
constraints. Machines draw straight lines more easily 
than curved lines; and piecewise linear approximations 
are satisfactory approximations from a visual as well as 
a theoretical viewpoint. "Piecewise linear" is more 
suitable computationally for algorithm development; and 
piecewise linear can be as close as desired, certainly 
within machine precision constraints. For our submodel, 
we allow only polylines for our 1-cells.
* Some authors require that the 2-cells be simply- 

connected (no holes). This exposition does not. In fact, 
the structure of non-simply-connected surfaces with 
well-behaved singularities at the boundary is well Known 
and is the basis for our understanding of our elementary 
2-dimensional building blocks, the punctured V -cells.
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The 0-cells in the usual topological model may take any 
real coordinate values on a surface that has infinite 
divisibility. In any implementation, however, machine 
precision will force the values into some finite grid. 
For our submodel, the 0-cells and the polyline interior 
vertices must have coordinates in some finite grid.

Our submodel puts considerable restrictions on the 
0-cells and 1-cells; and one might ask if our submodel is 
as good as the general topological manifold for 
representing maps. In a very important sense, it is 
better for representing digital maps: Every computer 
implementation of a digital map is an instance or 
realization of our submodel; and many of the difficulties 
arising from machine precision constraints, such as 
topological uncertainty under transformation, can be 
better understood in the context of our finite-grid/ 
polyline (or discrete-location/linear) submodel.

While our 0-cells can come from only a finite set (in any 
particular instance, where the grid is given explicitly 
or implicitly) , the points on our 1-cells are infinite in 
number. We keep track only of the vector ends of the 
segments making up the polylines; but our mathematical 
model requires that all of the points on a line segment 
be locatable, even though they cannot be explicitly 
stored.

Every instance of our submodel is also an instance of the 
more general topological manifold model; hence, we may 
use special properties of the submodel structure or use 
general properties of the larger model as needs arise. 
We examine topological stability in both contexts.

STABILITY

Continuous Deformation.
The mathematical notion of continuous deformation is just 
a formal representation of the intuitive concept. For a 
surface or manifold, S, in a space, K, a continuous 
def ormat ion over time T is simply a continuous map:

*: Sx[0,T]    > K

satisfying *(s,0) - s, which says intuitively that, at 
time zero, every point is in its original position.

For each intermediate value of t in [0,T], we have the 
image of the ongoing deformation of S at time t given 
by:

Continuous deformations need not preserve topological 
properties of S at each stage t. In other words, the 
intermediate image, *(Sx{t}), may be topologically 
different from S. (It may even shrink to a single point 
if * is a contraction!) If S has a cell structure, then 
that cell structure may induce the same, a different, or 
no cell structure on the intermediate image, *(Sx{t}).
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We want to examine deformations that "almost always" 
preserve some cell structure on S (for all but finitely 
many values of t in [0,T]). Then we will be able to 
recognize when a deformation has changed the cell 
structure.

We also want to be able to distinguish small deformations 
from large deformations by looking at the distances 
through which the deformations move points. This is 
accomplished by limiting the maximum path length allowed 
in our deformations, where path length for each point s
in S is the length of the arc:

\
*<{s}x[0,T]).

The class of all continuous deformations of our manifold 
is much too large to use for our study of stability. 
Moreover, this large class contains many exotic maps 
under which our cell structures become immediately 
unstable for all t > 0. In order to study stability, we 
examine families of deformations which do not move 
points too far and which move neighboring points in 
similar directions across similar distances. These 
deformations will be defined by their action on a finite 
set of points and extended in a piecewise linear manner 
to the whole space.

Our goal in this short paper is to study stability, not 
to develop a theory of interesting deformations. So 
without further elaborating on the theory behind the 
class of deformations described above, we simply point 
out that the deformations are defined for all instances 
of the larger continuous model and hence for all 
instances of the submodel. However, the intermediate 
image, *(Sx{t}), of the deformation of an instance of 
the finite-grid/polyline submodel will not always be an 
instance of that submodel. Nevertheless, this 
intermediate image will always be an instance of the 
polyline submodel because of the piecewise-linear nature 
of the allowable deformations!

/y/^l^^vE'E

Figure 1. Illustrations of five intermediate deformations 
of polyline map portions
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Notice in Figure 1 that the intermediate deformations on 
the left eventually change the cell structure when the 
lines double over on themselves. As the point p. moves 
to the right it gets closer to the linear feature P3P^, 
which itself is simultaneously moving to the left.

The initial polygon, however, becomes more stable if it 
is deformed as shown on the right. In the right-hand 
deformation, the features move toward an equilibrium 
position in which they are in some sense "as far from 
one another as possible." The "best" shape that they 
could attain in this simple example is a regular 
pentagon. The "good" deformation on the right is 
achieved by sending the vertices in just the opposite 
directions as in the "bad" deformation on the left.

The two deformations depicted in Figure 1 in some sense 
embody the basic ideas concerning stability:

(1) Stability is threatened when point features move 
toward nearby or nearest non-adjacent line segment 
features (and may then possibly cross over them!)

(2) Stability is improved when point features move away 
from nearby or nearest non-adjacent line segment 
features.

In the general situation of the 0-cells, 1-cells, and 
2-cells of a map, however, the features are surrounded 
by other features; and movement is constrained in all 
directions:

Figure 2. Cells in more complex map example.

In the example in Figure 2, the point p l is now further 
constrained by the additional features around it. That 
point is no longer free to move to the left to fill out 
the pentagon unless the points on the left of it move 
further to the left. There are two approaches that one 
may take with the general situation; and they correspond 
merely to assessing how good or bad the situation is, or 
to describing how to improve the situation. The easier 
first approach we will call "measuring robustness."
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ROBUSTNESS

Robustness of a statistical estimator is a quality of 
permanence and reliability under varying conditions. We 
borrow the notion from the area of statistics, and we 
apply it to our geometric realizations of our map data. 
In statistics, an estimator is robust if it can withstand 
relatively large perturbations in the statistical data. 
For our application, a geometric realization of a 
specific cell configuration will be said to be a robust 
realization if it can tolerate considerable perturbation 
of feature positions without changing the cell structure.

If we ask how "bad" is the particular configuration, and 
where is it "worst," we may want to find one feature 
and the minimum distance we may perturb that feature 
(toward the nearest non-adjacent feature) to change cell 
structure. (Equivalently, we can ask for the least upper 
bound of distances that we can move all of the features 
simultaneously and still not change the cell structure.) 
If we ask how "good" can we make the map, we are 
asking the more difficult question of how to move all of 
the features simultaneously to a "best" or in some sense 
"most stable" position. That second problem appears to 
be much more formidable than the first, and rather like 
the classic unsolved n-body problem. We can, indeed, 
treat the problem as a force problem, and achieve 
interesting stability results. First, we will examine 
the easier problem of determining how unstable a feature 
configuration is and where the instability is worst by 
locating nearest non-adjacent feature pairs.

ROBUSTNESS AND INSTABILITY MEASURES

The following result regarding line segments is the key 
attribute that makes the finite-grid/linear submodel 
superior for studying instability.

(1) The minimum distance between two non-interesecting 
closed line segments is always attained by a pair of 
points, at least one of which is an end-point of one of 
the line segments.

This fact is easily seen and easily proved; however, the 
very important ramification of the fact is that computing 
distances between features in a polyline submodel boils 
down to computing point-to-line-segment distances, which 
are easy to compute.

If our topological data is stored in a TIGER-like file 
that "builds neighborhoods" in 0(N,) time, where N, is 
the number of cells in the neighborhood of a feature f, 
then the following algorithm will detect the nearest pair 
of features in 0(£(m2 )) time where m is the polyline 
vertex count in each 2-cell, and the sum is over all 
2-cells. The algorithm will also find the nearest segment 
to every point feature (0-cell or polyline vertex), and 
may be modified to yield nearest segment-to-segment 
distances using the fact (1) stated above.
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Algorithm for computing robustness measures. 
The minimum distance between a pair of features and the 
minimum distance from each vertex to a neighboring 
non-adjacent segment may be computed as follows:

INPUT: 0-cells, 1-cells, 2-cells, polyline vertex and
polyline segment identifiers, and coordinates for 
0-cells and polyline vertices.

OUTPUT: Closest-pair(a,b,c); where
a is a 0-cell or a polyline vertex identifier; 
b is a polyline segment identifier; and 
c is the distance between them.

Nearest-segment-to- x =(b,d); where
x assumes every 0-cell or a polyline vertex identifier; 
b is the nearest polyline segment's identifier; and 
d is the distance between them.

PROCEDURE NEAREST

Initialize Closest-pair(a,b,c) to any polyline vertex, 
any polyline segment, and their distance.

FOR every 0-cell or 1-cell f DO

Collect in a buffer all of the features that lie in 
the smallest closed neighborhood N, of f

IF f is a 0-cell, THEN DO

Initialize Nearest-segment-to-f to any 
non-adjacent segment and compute distance

FOR each non-adjacent polyline segment in N, DO

Compute distance to segment and update 
Closest-pair(a,b,c) and Nearest-segment-to-f, 
if necessary.

ELSE DO

FOR each interior polyline vertex v of f DO

Initialize Nearest-segment-to-v to any 
non-adjacent segment and compute distance

FOR each non-adjcnt. polyline segment in N, DO

Compute distance to segment and update 
Closest-pair(a,b,c) and Nearest-segment-to-v, 
if necessary.

END PROCEDURE NEAREST

For most map inputs with polygons having relatively few 
components, the buffering step of collecting all features 
of Nf may be done in an array for faster processing.
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Figure 3. Smallest closed neighborhood of p l . 

RECOVERING STABILITY

Because the above algorithm examines every non-adjacent 
segment in the smallest closed neighborhood of every 
point feature (0-cell or interior polyline vertex), we 
may modify the algorithm to have it compute a net 
"force" of all of those non-adjacent segments on each 
point feature instead of having it merely locate the 
nearest segment, by making the following change:

Replace:

Compute distance to segment and update
Closest-pair(a,b,c) and Nearest-segment-to-f (or v),
if necessary.

By:

Compute the force on point feature due to segment 
and add to net-force-on-f (or v).

Since the non-adjacent segments of the smallest closed 
neighborhood surround the point feature and in some 
sense isolate the point from effects of other segments, 
it makes sense to use this force model. As with the 
n-body problem, we can compute a force on each of our 
vertices in our initial configuration. We may model the 
forces on a vertex to be inversely proportional to the 
distance of points on neighboring non-adjacent segments.

Figure 4. Forces exerted on a point by a line segment,
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We may sum the forces by a straightforward vector 
integration. The result will be a vector whose 
magnitude and direction provide a best initial direction 
and speed to move our vertex in order to improve 
stability. As with the n-body problem, computing initial 
forces is not difficult. The hard part is determining 
the movement of the system, and, in our case, finding 
the eventual equilibrium position. We may simulate the 
movement by iterative linear approximations; and, 
perhaps surprisingly, that approach looks promising.

FUTURE DIRECTIONS

The usual drawbacks to iterative methods are cost and 
convergence. Some experimentation is required to learn 
more about convergence, but our finite grid submodel 
promises to be extremely useful in establishing a bound 
for tolerances to replace "exact or total stability."

Cost also remains managable. Because the force 
computation is local, depending only on the smallest 
closed neighborhood, Nfr we can achieve, for all size 
maps having approximately the same local neighborhood 
configurations, a linear (in the number of point 
features) force computation algorithm. This possibility 
makes an iterative approach to stability improvement 
seem reasonable for large maps as well as for small 
maps. We plan to do more experimenting with iterative 
approaches to stability improvement.
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