
THE dbmap SYSTEM

Donald F. Cooke
Geographic Data Technology, Inc
13 Dartmouth College Highway
Lyme, New Hampshire 03768

Beman G. Dawes
RD #2, Box 35

Onancock, Virginia 23417

ABSTRACT

The dbmap system consists of a high-level language for spe
cifying digital mapping and geographic information systems
and a compiler/execution monitor to run an application pro
grammed in dbmap. The system is readily expandable due to
an open-architecture design, and produces applications with
very modest execution overhead, dbmap currently runs on IBM
PC-AT computers and can probably be ported to any system
with an ANSI "C" compiler. Operational systems written in
dbmap have proven their worth in over six months of testing
in production environments.

BACKGROUND

After six years of writing monolithic computer programs to
support map digitizing, updating and editing operations, we
designed and implemented a language — "dbmap" — expressly
intended for generating a wide variety of application pack
ages. We had become frustrated with maintenance and modifi
cation of an increasing number of operational systems, each
of which needed support from an experienced programmer. We
were also faced with opportunities to market diverse map-
related software systems applied to vehicle routing and
dispatching, map updating, geocoding and spatial analysis.

We had rejected conventional approaches to "generalized"
mapping such as systems supplied by Intergraph or E.S.R.I,
for several reasons: first of all, in 1980, none were
addressing topological data structures explicitly. Secondly,
such systems sacrificed execution efficiency for generality
and flexibility. Finally, they could not be used as the
foundation for inexpensive added value products because of
their high cost and the price of the hardware they required.

In January 1986, we started a design process which ran for
three months. We rejected both previous monolithic programs
and the ARC-INFO/Intergraph paradigm of a flexible, tailor-
able system. Instead we settled on a simple, powerful
language capable of specifying the characteristics of a
desired system. The language, called "dbmap", is simple to
learn and extremely flexible.

A junior programmer can learn dbmap in a few days, especial
ly if there are a variety of examples to follow. As with
other languages, the dbmap language statements must be keyed
into a command file which is read by the dbmap compiler.

363

The dbmap compiler generates "P-code" which is immediately
executed.

The dbmap compiler is currently written in ANSI "C". We
expect to run dbmap primarily in IBM PC-AT and '386 environ
ments. Our experience with running the "db" subset (data
base management only, no graphics) on a Data General MV-4000
suggests that dbmap would perform well on Macintosh, VAX or
other machines.

In general, we designed for the fast single-user systems we
expect will prevail in the near future. A typical minimum
configuration that we run in daily operation is a 640K PC-AT
clone running at 8 Megahertz. We configure such a machine
with a fast 40 Mbyte Winchester disk, a mouse and two moni
tors: EGA for map display and Hercules monochrome for text.
Cost per workstation at "street price" is about $3500.

APPROACH
We developed dbmap using traditional software engineering
methodology:

* Problem analysis
* Requirements definition
* Overall system design
* Component design, implementation, and testing
* System level testing
* Refinement and maintenance

As in other non-trivial systems, the actual process was
often more interative than sequential. Two steps forward
were often followed by one or two steps back.

INTEGRATED SYSTEM

dbmap is a single integrated software system rather than a
series of separate application systems because of interac
tion between applications. For example, address matching
(geocoding) is improved by the capability of displaying a
map of matched addresses.

Consequently, we implemented dbmap as a single large program
able to perform almost one hundred separate functions. Some
of the functions are simple, such as changing the color of
the cursor. Others are of medium complexity, such as per
forming an index file search. Very complex functions include
creation of a complete database through a screen manager.

PROGRAMMING LANGUAGE

dbmap is designed to be programmable rather than fixed
because the details of how an activity is carried out vary
according to the context. For example, digitizing nodes or
shape points in a Census Bureau TIGER database is a very
different context from digitizing address matching rejects
though the underlying digitizer functionality is the same.

dbmap therefore is a high-level programming language with
facilities for data definition, execution sequence control
and expression evaluation. These facilites can be used both

364

procedurally, like Pascal, FORTRAN or "C" programs, or de-
claratively to specify database and other parameters.

Execution of a dbmap application requires a dbmap language
compiler/execution monitor which is described below.

OPEN ARCHITECTURE

We designed dbmap as an open system since we did not feel we
could anticipate all required functions at design time. In
the event that a new function (converting Arabic numbers to
Roman numerals, or decimals to fractions) is needed, it is
possible to define and write the function in such a way that
the dbmap system makes it available to all dbmap applica
tions.

dbmap 1 s open software architecture presently requires that
new functions be written in "C". A dbmap function begins
with a control block that specifies dbmap language formal
argument requirements to the dbmap compiler. This scheme
allows the dbmap compiler to handle an ever-expanding li
brary of functions as if all functions had been built into
the language when the system was designed.

High level functions such as input/output, database index
ing, graphic and geographic operations are not built into
the dbmap language but have been implemented via the open
architecture methodology.

New functionality can be added either through "value-produc
ing" functions (similar to subroutines) or at a much higher
(superstructure) level which allows creation of a complex
environment like a sort/merge utility or report generator.

DATABASE MODELS

dbmap supports a variety of database structures because no
single database design can serve all applications. For
example, (1) the network database model (2D) works well for
DIME or TIGER file creation and maintenance, (2) an unnor-
malized relational model (the traditional 300-byte DIME
file) is better as a distribution format and (3) a point
database is adequate for supporting centroid-based retrieval
systems like "On-Site" and "Area Profile Reports". Route
optimizing or choropleth mapping may require still other
structures.

In internal memory, dbmap often uses a network model, but
external disk files may be any structure. In general, the
needs of the application determine the file structure.

OPERATING ENVIRONMENT

We required flexibility in hardware and operating system
environments for dbmap applications since no single environ
ment can serve all potential uses. For example, spatial
spreadsheet (desktop CIS) manipulation calls for a personal
computer, map digitizing is a workstation application and
large-scale address matching is still a mainframe operation.
Applications on the new Apple, Amiga and Atari machines (not

365

to mention the forthcoming CD/I systems) look increasingly
attractive.

The only common thread in this mix of environments is the
likelihood of availability of a "C" compiler. dbmap was
implemented using the draft proposed ANSI "C" language.
Considerable care was taken to insure portable code, with
initial development done on AT-Clone microcomputers. Sub
sequently the non-graphics portions of dbmap have been moved
to a Data General MV-4000 minicomputer; all code compiled
and ran correctly on the first attempt and has been used in
that environment for several months.

TRADEOFFS

Operating speed is of considerable importance to dbmap users
for economic reasons and ease-of-use. Many users will spend
much of their workday using dbmap, so slow response or error
prone applications are not acceptable.

Ease of programming is not as important as flexibility and
ease of use. For every person hour spent programming appli
cations in dbmap, hundreds of person hours will be spent
using the applications. On the other hand, programmers must
be much more productive in dbmap than in languages like C or
Pascal to avoid traditional software bottlenecks - and these
same dbmap programmers will likely be less experienced than
typical C or Pascal programmers!

The dbmap compiler uses a compile and go approach similar to
commercial "turbo" compilers. Thus a dbmap program is
compiled into memory each time it is used. Compile time is
less than half a second for simple dbmap programs, and less
than ten seconds for very large programs.

The fast combined compile/test cycle aids dbmap programmer
productivity.

Compiling each use implies that the latest version of dbmap
functions are always invoked. Thus if a bug is fixed or an
algorithm is improved, the benefits apply right away to all
applications which use the function.
Compiling rather than interpreting results in acceptable
operating speed. For example, complex data processing jobs
commonly run at 100,000 to 200,000 records an hour on an AT-
clone while simple sequential file searches run at over
1,000,000 records per hour. File operations actually run
acceptably fast on a PC-clone but graphics operations need
the speed of an AT at a minimum.

"ZONE RANGER" — A dbmap APPLICATION

The first system written in dbmap was one we call "Zone
Ranger". We use Zone Ranger to create custom address coding
guides for computerized dispatching services. Customers
indicate their delivery territories (zones) on standard
maps, usually USGS 7.5 minute quads, by outlining the zone
boundaries with a marker. We display corresponding images
of our digital maps on Zone Ranger's EGA monitor and use the
mouse to "lasso" each zone in turn. When all zones have

366

been lassoed (and line-segments in our data base tagged with
zone numbers) a utility program creates the customer's ad
dress coding guide in deliverable format.

Figure 1 illustrates the Zone Ranger CRT display in a mono
chrome implementation used for these figures. The main
window shows a zoomed image of the New York City financial
district selected from the Manhattan's 8753 line segments
previously loaded into dbmap's working RAM. The operator has
used the "Name" function to label ten streets.

Figure 1 Zone Ranger CRT display

On the left of the screen from top to bottom are the 22-item
main function menu, a "soft" keypad for entry of zone
numbers, the current zone identifier and a small orientation
map that confirms that we've zoomed in on a small area in
the south of the submodel.

The operator can toggle line segments in or out of the
current zone one at a time (Incl & Excl), a street at a time
(Str & XStr) or by using the mouse to lasso a group of
segments (Lasso & XLass). Figure 1 shows the lasso trace of
a delivery zone northeast of the World Trade Center.

In this example the operator activated the lasso function by
clicking the mouse in the "Lasso" menu box, the 17th pane of
the main function window. This action activates case
"win.p=17" of the dbmap language code for the Zone Ranger
application (Figure 2).

Figure 2 shows all of the dbmap code needed to specify the
lasso capability. Line 1 identifies the code for clicking
on the 17th pane of the main menu; an exclamation point
delimits a comment field. "setwidth(2)" invokes a dbmap
function that makes subsequent calls to "drawO" plot

367

case win.p=17 ! Lasso segments into current zone
setgwidth(2> ! Make "draw" default double-width line
while lasso(SEG,segdata, ! Test: segments in lasso?

tsegflag <- 1 ! Set flag if segment is in
draw(SEG id()», ! Redraw included segments
"Hold button down while lassoing segments to include")

endwhile ! End of case win.p=17

Figure 2 dbmap Code for Zone Ranger Lasso Function

double-width lines. (In the EGA color version of Zone
Ranger we choose a line color instead of width.)

Lasso needs four parameters:

lasso(<cell type>, <data>, <action>, <help>)

lasso displays the <help> message, which must be a string constant,
and interacts via mouse/digitizer and graphics display to identify zero or more internal
database entries for <celltype>.
Then, for each of these internal database entries in turn, <data> is retrieved,
<action> is performed, and <data> then replaces the original database entry

For practical purposes, <action> will usually be a procedure which modifies
<data> to effect the purpose of the lasso

lasso returns 1 if successful, 0 if failed Failure would imply out of current window,
operator decided to terminate, or similar non-completion

Figure 3 "Lasso" Function Definition from dbmap Manual

The first parameter says we're interested in lassoing line
segments in the database, not nodes, points or other ob
jects, "segdata" is the name of a data control block for
line segment data, one element of which is "segflag" which
if set indicates inclusion in the current zone.

"<action>" happens to each segment determined to be inside
the lasso: "segflag" gets set to 1 and the segment is
redrawn, now with double line width. The help message
appears on top of the main map screen as the lasso is being
drawn. (The help message doesn't show in Figure 1 which
really shows the "Print" function.)

Figure 4 shows the Zone Range screen after the lasso
operation.

CONCLUSION

It's probably clear from the example that dbmap is more
difficult to program than a general database system like
dBase III or RBase 5000. We feel that dbmap's ability to
handle the more complex world of computer cartography com
pensates for and explains its demands on the programmer. We
have found that junior programmers can become conversant
with dbmap in a week or two and can master implementation of
a new system after a month's experience.

A year ago we had not begun implementation of dbmap; at
present we have several production systems in operation in-

368

Figure 4 Result of Lasso Operation on Figure 1

house and at customers' sites. We are unequivocally pleased
with both the dbmap language and the applications developed
so far. We expect dbmap applications to supply all our in
ternal mapping needs by mid-summer, 1987 and to provide the
foundation of a family of integrated mapping products.

ACKNOWLEDGMENTS

The authors wish to thank Robert Reeder, Ted Jerome and Pat
rick Ferraris for their valuable suggestions and contribu
tions.

369

