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ABSTRACT

This paper introduces the concept of the Triangulated 
Irregular Network (TIN) for computer representation of 
topographic surfaces. Discussion focuses on the TIN's 
benefits for interactive topographic modeling and site 
design applications. The paper then presents an alter 
native method of TIN generation termed the Inward Spiral 
Method. This method of TIN generation represents an 
improvement over previous methods by maintaining the 
integrity of site boundary edges and by automatically 
augmenting sparse or widely disparate data sets. The 
paper concludes with a discussion of the method's data 
structure and a sampling of its potential applications.

INTRODUCTION

The triangulated irregular network (TIN) is a topological 
data structure used to represent three-dimensional topo 
graphic surfaces. The TIN was developed out of the 
desire of geographers and cartographers for a more accu 
rate and efficient means of collecting and storing topo 
graphic data in a digital format. A TIN may be visual 
ized as a set of triangles which connect surface data 
points in a continuous coverage of irregularly-shaped 
triangular facets. (Figure 1)

Figure 1 TIN representation of a topographic surface

TIN representations of topographic surfaces have several 
advantages over more commonly used grid representations. 
Mark (1975) and Peucker, et al (1976) have convincingly 
demonstrated that TIN systems result in a more accurate 
surface representation with far less storage, and 
McCullagh and Ross (1980) have shown that the generation 
of TIN surfaces can be accomplished much faster than the 
generation of gridded surfaces.
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Grid systems do not permit vertical surfaces, and irregu 
lar boundaries or interior holes in a surface area are 
difficult to define with a grid. TIN systems, on the 
other hand, can describe nearly any surface, including 
those with holes, irregular boundaries, or vertical 
surfaces. In addition, the resolution of a gridded 
surface representation is limited to the resolution of 
the superimposed grid, while a TIN representation is 
limited only to the resolution of the original data.

THE TIN AS AN INTERACTIVE SITE DEVELOPMENT TOOL

These benefits have been exploited for a variety of appli 
cations. The TIN is now commonly utilized by automated 
survey systems, contour map generation software, earth 
work calculation software and geographic information 
systems. Most of these applications employ the TIN 
purely as an internal data structure - that is, they 
utilize the TIN as a structure for storing and retrieving 
topographic data. But perhaps the most exciting advan 
tage of the TIN, and until now the one most underuti 
lized, is the TIN's tremendous potential as an inter 
active site design and development tool.

The irregular structure of the TIN is well suited to 
interactive design applications because it allows a 
surface to be freely manipulated and edited. Surface 
points, for example, can be moved in any direction 
without affecting the data structure of the original 
surface. Points can be added to or deleted from a TIN 
and the change accommodated by a simple, local triangu- 
lation of the altered triangles. (Figure 2)

Figure 2

Points moved, added, and deleted. These basic operations can be 
combined into powerful interactive site design capabilities - for 
example, fitting a building footprint onto the topographic surface.

These advantages are being recognized by developers of 
three-dimensional site modeling systems. Several turnkey 
CAD vendors, for example, now offer the TIN as their 
topographic data structure. The use of the TIN in micro 
computer-based CAD and engineering systems is also 
growing. The Inward Spiral Method of TIN generation 
described here is a component of one such microcomputer- 
based system.
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METHODS OF TIN GENERATION

There are several methods of generating a triangulated 
irregular network from a set of data points. The process 
of each method is essentially a problem of "connect the 
dots;" that is, determining the connections between data 
points that will yield the best overall triangulation. 
The "best" triangulation is that which most accurately 
describes the surface being represented. In practice, 
this has proven to be the triangulation in which the 
triangles are most equilateral in shape.

Triangulation methods fall into two general categories. 
Methods of the first category actually involve two 
steps. The first step generates an initial, arbitrary 
network of triangles from the surface data points, while 
the second step refines the network by optimizing tri 
angle shapes. Examples of this category can be found in 
the work of Gold, et al (1977) and Mirante, et al 
(1982).

The second general category of triangulation methods 
consists of methods which seek to generate the optimal 
triangulated network in a single step. These methods 
exploit the geometric principles underlying the organi 
zation of a TIN and produce what has come to be called 
the Delaunay tesselation (or triangulation) of a set of 
data points. Examples of these methods can be found in 
Brassel and Rief (1979), McLain (1976), McCullagh and 
Ross (1980) and Tarvydas (1983).

All these methods of TIN generation produce suitable 
triangulated networks but have several disadvantages. 
Some reguire that data be input manually, thus diminish 
ing some of the economic benefits of automation. Some 
methods do not order data points or resultant triangles 
in an effipient and flexible manner, making interactive 
edit operations difficult. Some methods employ localized 
search procedures which, in extremely sparse or disparate 
data sets, can produce overlapping triangles. Most 
notably, all the reviewed methods typically encounter 
problems at concave boundary edges. Triangles may be 
generated outside the boundary, or triangle edges may 
intersect boundary lines. These problems can be elimina 
ted only with substantial difficulty and loss of overall 
efficiency.

THE INWARD SPIRAL METHOD FOR TIN GENERATION

The Inward Spiral Method for generating triangulated 
irregular networks utilizes many concepts of previous 
methods. It introduces several enhancements to existing 
methods and is a superior method for certain applica 
tions. The method was developed to fit the requirements 
of SCHEMA, a three-dimensional modeling system being 
developed at the Harvard Laboratory for Computer Graphics 
and Spatial Analysis. One of the system's primary appli 
cations is the modeling of urban areas, and the special 
requirements involved with this application dictated that 
a different triangulation method be devised.
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SCHEMA structures an urban model around the street pat 
tern of the city. Blocks enclosed by streets define the 
surface areas to be triangulated, and the streets them 
selves constitute the boundaries of the triangulated 
areas. It was of paramount importance, therefore, to 
maintain the integrity of the street edges. No triangle 
could be generated outside the street boundary, and no 
triangle edge could intersect a street edge. This 
constraint led to the development of the Inward Spiral 
Method.

The Inward Spiral Method generates an optimal triangu 
lated network in a single iteration, it maintains the 
integrity of boundary edges and it minimizes the possi 
bility of overlapping triangles by automatically augment 
ing sparse or widely disparate data sets.

The heart of any TIN generation method is the algorithm 
which determines the points to connect to form an optimal 
triangle. The Inward Spiral Method uses the algorithm 
devised by McLain (1976). The McLain algorithm operates 
by assigning two points as endpoints of a triangle edge, 
examining neighboring data points and applying Euclidean 
geometry to determine the point which, when connected to 
the assigned edge, defines the optimal triangle.

The efficiency of this method depends on the efficiency 
with which it can determine the best point for the crea 
tion of a new triangle. Obviously, if every point on the 
surface area were examined for each new triangle, the 
efficiency would be considerably diminished. The Inward 
Spiral Method addresses this problem by superimposing a 
rectangular grid over the data set (Tarvydas, 1983). 
Data points are sorted into rows and columns within the 
grid. The search for the point defining the optimal 
triangle, then, is limited to those data points in adja 
cent grid cells.

After a complete data set has been input, the boundary 
edges of the surface are tested against the cell size of 
the superimposed grid. If edges are longer than the grid 
cell dimension, additional data points are inserted along 
the boundaries such that the distance between all 
boundary points is less than the grid cell size. This 
process eliminates the long, narrow triangles which typi 
cally arise at boundary edges and greatly diminshes the 
possibility of an error occurring at a boundary edge.

The data is then sorted into rows and columns within the 
superimposed grid. Each cell of this grid is then 
examined in turn. When a grid cell within the boundary 
of the surface area is found to be empty, a new data 
point is generated within that cell and its elevation 
determined by a distance-weighted averaging of nearby 
data points. This procedure ensures that every grid cell 
within the boundaries of the surface area will contain at 
least one point, thus minimizing the possibility of the 
generation of overlapping triangles and enhancing the 
aesthetic appearance of the surface.
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The data are now ready for triangulation. The first 
boundary edge is chosen as a starting baseline, and the 
McLain algorithm examines data points to the inside of 
the boundary edge. The point selected to be the best 
point for a triangulation from that edge is -tested to 
determine whether a triangle drawn to that point will 
intersect any boundary edge. If the test shows that an 
intersection will occur, the point is flagged and the 
next best point tested. If no intersection occurs, the 
triangle is drawn and added to a list of triangles in the 
data structure. The process is repeated for each consecu 
tive boundary edge.

When the boundary triangulation is completed, the method 
looks to the triangles thus formed and establishes new 
triangles on the interior edges of previous ones. This 
procedure is repeated for each triangle, working from the 
lowest numbered triangle to the highest numbered tri 
angle, until no new triangles can be created. By this 
sequence of triangulation, the method traverses the data 
points in a spiral pattern moving inward from the 
boundary edges. (Figure 3)

Figure 3 The Inward Spiral Method

The inward spiral pattern and the tests associated with 
the boundary triangulation ensure the integrity of the 
boundary with minimum effort, and thus the method repre 
sents an improvement over other methods in applications 
where maintenance of the boundary is essential. The 
automatic insertion of data points significantly improves 
the method's reliability and enhances the aesthetic 
quality of the resulting surface.

DATA STRUCTURES

There are two data structures that have been used in the 
generation of triangulated irregular networks. The first 
data structure regards the triangles themselves as the 
primary entities. Each triangle is an element in the 
data structure and is defined by pointers to the 
triangle's three vertices. The data structure also 
maintains pointers to each triangle's three adjacent 
triangles. (Figure 4) This is the more widely used of 
the two data structures and can be found in the work of 
McLain (1976), Gold, et al (1977), McCullagh and Ross 
(1980), Mirante, et al (1982), Tarvydas (1983) and 
others.
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The second data structure regards the vertices of tri 
angles as the primary entities. The network is defined 
by allowing each vertex to point to a list of the verti 
ces connected to it by triangle edges. The list is 
sorted in clockwise or counter-clockwise order around the 
center vertex, starting at "north" in the local Cartesean 
coordinate system. (Figure 5) This data structure 
requires about one-half the storage of the first method. 
The structure is attributable to Peucker and Chrisman 
(1975) and can be found in the work of Fowler (1976).

Figured TRIANGLES data structure Figure 5 CONNECTED POINTS data structure

Each data structure has its own advantages and limita 
tions, and each is suitable for different applications. 
A list of triangles, for example, is essential for effi 
cient display functions such as hidden surface removal, 
surface shading, or fractual surface texturing. A list 
of connected points, on the other hand, is useful for a 
variety of editing operations such as "rubber-banding" of 
a modified surface, data point insertion and deletion or 
analytic functions, such as volume calculations or 
contour cutting. The Inward Spiral Method combines ele 
ments of each data structure into a dynamic, two-tiered 
data structure that is useful for all these applications. 
(Figure 6)

Figure 6 Inward Spiral Method data structure
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An array (POINTS) contains the x, y and z coordinates of 
each data point. As triangles are generated in the tri- 
angulation process, the indices of the points defining 
each triangle are placed in the TRIANGLES list. This is 
similar to the first data structure described, but it is 
different in that the records of adjacent triangles are 
not kept. Instead, the list of triangles is used to 
generate the data structure of connected points (CON 
NECTED POINTS). A fourth element is added to the POINTS 
array which indicates the position in the CONNECTED 
POINTS list to which each data point refers. Editing and 
analytic operations are performed within the CONNECTED 
POINTS structure. If editing operations result in 
triangle changes, CONNECTED POINTS is transformed to a 
new, updated TRIANGLES list which is then used for 
display operations.

This combined data structure takes advantage of each of 
its component structures' best potential. It results in 
a system that is capable of both efficient interactive 
editing and sophisticated display. Although the data 
structure contains redundant information, it is of com 
parable size to the most commonly used data structure of 
triangles and adjacent triangles.

APPLICATIONS

One of the applications for which a triangulated irregu 
lar network is especially useful is interactive three- 
dimensional modeling. The irregular nature of a TIN 
allows it to be freely edited and manipulated, and the 
data structure of the Inward Spiral Method improves the 
efficiency of such operations.

One of the basic editing operations is the ability to 
move or "drag" a point along the topographic surface, 
with the edges connected to the point "rubber-banding" to 
the new point location. To accomplish this, a point is 
indicated with a cursor device. The search for the 
desired point involves only those points contained in the 
grid cell in which the cursor was activated and is, 
therefore, extremely fast. As the point is moved, the 
data structure of connected points instantly indicates 
the lines to be redrawn to create the rubber-banding 
effect.

Another basic operation involves adding new data points 
to an existing surface. This is done by determining the 
triangle which circumscribes the new point and connecting 
the point to the vertices of the circumscribing triangle. 
Mirante, et al (1982) describes a method for determining 
the triangle containing a point which employs extensive 
use of matrix algebra. The data structure of connected 
points, however, allows this function to be reduced to a 
few simple arithmetic operations (McKenna, 1985).

Data point deletion can also be performed very effi 
ciently within the connected points data structure. The 
selected point is simply removed from the POINTS array 
and its associated points removed from CONNECTED POINTS.
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The resulting polygon "hole" is then treated as the 
boundary of a surface with no interior data points. A 
boundary triangulation is performed and CONNECTED POINTS 
is updated to reflect the change.

The connected points structure is also useful for calcu 
lating the volume under the surface area. The volume 
under any single triangle is found by multiplying the 
surface area of the triangle by the average height of its 
three vertices. Computing the volume under an entire TIN 
in this fashion would require the computation of the area 
of each triangle and the average height of each tri 
angle's three vertices. This would involve many separate 
area calculations, and since any vertex is shared by 
several triangles, the height of each vertex would be 
considered several times.

An alternative method of volume calculation takes advan 
tage of the connected points structure. The number of 
points connected to a given point (i.e., the number of 
triangles which share that vertex) is easily determined. 
The volume under the entire surface, therefore, can be 
reduced to averaging the height of each data point by the 
number of points connected to it, summing the average 
height of all data points and multiplying the sum by the 
total area of the surface. This method represents a 
considerable savings, as each data point is considered 
only once, and no additional area calculations need be 
conducted.

A common application of the TIN is the automatic genera 
tion of contour maps. A contouring method which uses the 
connected points data structure is described by Peucker 
and Chrisman (1975). Other methods and discussions of 
this application can be found in most of the literature 
related to TINs.

TIN DISPLAY

Any computer-aided design system must be capable of fast, 
sophisticated three-dimensional display operations in 
order to be a truly useful design tool. The Inward 
Spiral Method employs the data structure of triangles for 
display operations. Triangles can be thought of as 
separate surface facets which combine to form the overall 
topographic surface. In this way, the TIN can be pro 
cessed by many of the display operations commonly used in 
three-dimensional modeling systems such as hidden surface 
removal, surface shading or fracted surface texturing. 
Moreover, because a TIN is a continuous, connected 
surface, many of these operations can be simplified for 
TIN displays.

Hidden surface removal on raster display devices, for 
example, can be accomplished by a simple "back-to-front" 
display of the triangular facets. This process can be 
made more efficient by maintaining the values of the 
vectors normal to each triangle. Triangles whose normal 
vectors point away from the direction of view (i.e., 
those triangles which face away from the viewer) would
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not be seen from that viewpoint, and these triangles are 
never considered. The normal vectors can also be used 
for applying cosine shading to the surface (Figure 7) or 
for calculating slope or solar aspect of the surface.

Figure 7 A TIN surface in perspective, with and without surface shading

CONCLUSION

The triangulated irregular network has been shown to be a 
superior system for topographic surface modeling. TIN 
systems execute faster than grid systems and produce more 
accurate surface representations with far less storage. 
In addition, TIN representations can be freely edited and 
manipulated and thus provide significantly greater 
potential for interactive surface modeling and site 
design.

The Inward Spiral Method for the generation of triangu 
lated irregular networks is an improvement over other 
generation methods for certain applications. The method 
produces the most optimal triangulation in a single 
iteration. It maintains the integrity of boundary edges 
with minimum effort. And, by automatically augmenting 
sparse or widely disparate data sets, the Inward Spiral 
Method minimizes program error and enhances the aesthetic 
quality of the resulting triangulated network.

Figure 8 Complex surfaces successfully triangulated with the Inward Spiral Method
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