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ABSTRACT

The Psi-s plot represents the geometry of a line by 
determining Psi, the orientation angle or heading, at 
points along the line, and plotting that value against s, 
the cumulative curvilinear distance along the line. No 
matter how convoluted the line is, the Psi-s plot will be a 
single-valued function of s; it is much easier to 
parameterize such a single-valued function. Straight lines 
on the Psi-s plot represent either straight lines or arcs 
of circles in x-y space. The Psi-s representation can be 
used to characterize the shapes of irregular polygons. It 
also has been used in analyses of river meander planform, 
and in the automated detection of contour crenulations. 
The Psi-s plot should be valuable in the generalization of 
digital cartographic lines; it should have an advantage 
over standard methods for representing geographic lines 
which include substantial proportions of circular arcs or 
straight lines. Circular arcs and straight lines are common 
components of rivers, roads, and railroads. The technique 
would appear to have great potential for feature 
recognition and shape characterization of digital 
cartographic lines.

Electronic mail (BITNET) addresses for authors: 
ONEILLMP@VTVM1, GEODMM@UBVMS

231



INTRODUCTION

In any application of computers, the choice of an 
appropriate representation for the phenomenon being studied 
is crucial to algorithm design and in fact to the 
definition of problems themselves. Winston (1984, p. 21) 
defined two key concepts in artificial intelligence:

"A representation is a set of conventions about 
how to describe a class of things. A description
makes use of the conventions of a representation 
to describe some particular thing."

Winston then went on to emphasize the role of an 
appropriate representation in problem-solving. There has, 
however, been little attention in computer cartography to 
representations of geographic and/or cartographic lines. 
With few exceptions, cartographers have adopted the 
representation of a digital line as an ordered set of two 
or more coordinate pairs (a chain, or polyline represent 
ation) .

One apparent exception to this lack of explicit attention 
to representation is Poiker's Theory of the Cartographic 
Line (Peucker, 1975), which attaches an explicit "width" 
parameter (W) to a line, and then represents the line as a 
set of "bands" or rectangular boxes, with widths no greater 
than W, which enclose the line. In fact, this "theory" was 
developed a posteriori to describe the model underlying the 
so-called "Douglas-Peucker" line reduction algorithm 
(Ramer, 1972; Douglas and Peucker, 1973) and related line- 
handling algorithms.

Recently, Buttonfield (1985) reviewed representations of 
cartographic lines and their variability. In addition to 
an overview of Poiker's model and the fractal model of line 
variability, Buttonfield briefly discussed a parameter 
ization of a cartographic line, in which the x-and y- 
coordinates of successive points along the line are plotted 
against s, the accummulated distance along the line 
(Buttonfield, 1985, pp. 3-4). Although this approach 
simplifies the line, it produces two curves. Furthermore, 
equations fitted to either of these curves have no clear 
geometric interpretations.

In this paper, we present an alternative parameterization 
of a cartographic line. This Psi-s curve is an effective 
representation for cartographic lines, because straight 
forward geometric interpretations of the form of the trans 
formed line are possible. The Psi-s curve appears to have 
potential both for line generalization and for pattern 
recognition in cartographic lines.

THE PSI-S PLOT

The Psi-s plot represents the geometry of a line by deter 
mining Psi, the orientation angle or heading, at points 
along the line, and plotting that value against s, the 
cumulative curvilinear distance along the line (see Figures
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1 to 4, below). One advantage of this transformation is 
that, no matter how convoluted the line is, the Psi-s plot 
will be a single-valued function of s; it is much easier to 
parameterize such a single-valued function. Another 
advantage is that the shape of the Psi-s plot has a 
straight-forward geometric interpretation. Straight lines 
on the Psi-s plot represent arcs of circles in x-y space; 
in fact, if Psi is measured in radians, the radius of 
curvature of the arc is exactly the inverse of the slope of 
the Psi-s curve. Straight lines in x-y space can be 
considered to be arcs of circles of infinite radius, and 
appear on the Psi-s plot as horizontal straight lines (zero 
slope).

The Psi-s plot has been used in computational vision as an 
aid in characterizing the shapes of irregular polygons 
representing the outlines of machine parts (cf. Ballard and 
Brown, 1982). However, it has a longer history of use in 
geomorphology. Speight (1965) applied this transformation 
to river meanders when conducting a power spectral analysis 
of meander form. Then, Langbein and Leopold (1966) 
discussed this representation for meanders, pointing out 
that straight lines in Psi-s space represent circular arcs 
in x-y space. Brice (1974a, 1974b) extended this approach, 
claiming that a 'circles-and-straights' geometry (straight 
lines on the Psi-s curve) is more closely characteristic of 
meanders than are trigonometric functions (sine-waves in 
Psi-s). More recently, Mark (1986) applied the method to 
the automated detection of contour crenulations, and 
O'Neill (1987) extended the use of Psi-s plots for 
characterizing the planform geometry of river meanders.

PSI-S PLOTS OF GEOGRAPHIC LINES: SOME GENERAL EXAMPLES

The concept of the Psi-s plot and its relation to geometry 
in geographic (x-y) space can be made clear through the 
presentation of examples. In this section, we present maps 
and Psi-s plots of segments of three geographical lines: a 
meandering river (Figure 1), a winding mountain highway 
(Figure 2), and a contour line (Figure 3).

A Meandering. River;. The Hay River in northern Alberta 
provides an good example of a wandering stream with "free" 
(i.e., relatively unconstrained) meanders. The segment of 
the Hay River going downstream from X to Y (Figure 1, 
above) is represented on the Psi-s plot (Figure 1, below). 
Letters show the correspondence between bends or straight 
reaches on the river and straight line segments on the Psi- 
s plot. Note that sharp bend (such as the one at "g" on 
the Hay River) plot as very steep segments on the Psi-s 
plot, whereas more open bends (eg., "c") have lower slopes. 
Bend "c" in fact appears to be a compound curve, with a 
more open middle component (lower slope segment on the Psi- 
s plot) between sharper entrances and exits from the bend. 
There are no straight segments in this reach.
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Figure 1: A portion of Hay River, Alberta (above) 
and its Psi-s plot (below). Equivalent parts of 
the two plots are marked with lower case letters. 
Straight lines on the Psi-s plot represent 
straight lines if horizontal, and circular arcs 
otherwise.

A Mountain Highway. We noted above that roads were another 
type of geographic line which should be well-suited to the 
Psi-s representation. As in the case of rivers, roads 
commonly are composed of relatively straight segments
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joined by approximately-circular bends. Here, there a few 
straight segments, but most of the highway is composed of 
curves. Although the two lines are very similar in x-y 
space (cf. Mark, 1985, Figure 2 E and K, p. 49), there is a 
fairly distinct difference in the Psi-s plots. Note that 
the geographic length of a segment is its extent along the 
s axis; thus a visual examination of the Psi-s plot tends 
to exaggerate the importance of bends.
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Figure 2: A portion of the Pines to Palms 
Highway, southwest of Palm Springs, California 
(above) and its Psi-s plot (below).
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Figure 3: Psi-s plot of a portion of the 4800 
foot contour on an alluvial fan in Arizona. Two 
contour crenulations (see text below) are marked 
at "a" and "b".

A Corrtour; Line. Contours and shorelines are geographical 
lines which are not usually composed of circular arcs. 
(Exceptions might be found in cirques and other glacial 
landforms, or along spits.) Thus, it probably will take as 
many straight line segments to represent the contour on the 
Psi-s plot as it would on the x-y map (for an equivalent 
level of generalization). This impression is support by 
the irregular appearance of the Psi-s plot, which is 
presented at about the same scale as the other lines.

Whereas the Psi-s transformation may not reduce storage 
requirements in this case, it can be very valuable in the 
identification of features on contour lines (Mark, 1986). 
This will be discussed in more detail below.

THE PSI-S PLOT AND RIVER MEANDER RESEARCH

In their classic theoretical paper on river meander form, 
Langbein and Leopold (1966) developed a solution to the 
path of a river which, while fitting a total channel length 
L into a straight line distance D < L, minimized the 
variance of angular change along the path. Their 
probability analysis was most easily developed when stream 
azimuth was expressed as a function of distance along the 
channel (in other words, on a Psi-s plot). They found that 
the angle-change variance was minimized when the plot was a 
sine function (in Psi-s space), corresponding with what 
they called a "sine-generated curve" in cartesian 
coordinates (Langbein and Leopold, 1966, p. H3).
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Langbein and Leopold went on to note that sine-generated 
curves have "a relatively uniform radius of curvature in 
the bend portion" (Langbein and Leopold, p. H3) f which 
corresponds with "the fact that a sine curve has quite a 
straight segment as it crosses the x-axis" (Langbein and 
Leopold, p. H3). This straight segment represents about 
1/3 of the meander length. Also, they noted that the slope 
of the Psi-s curve "is the reciprocal of the local radius 
of curvature of the meander" (Langbein and Leopold, p. H3). 
They constructed Psi-s plots of several natural rivers and 
one meander trace from a flume study, and then fitted sine- 
curves to portions of these, apparently 'by eye 1 . These 
curves fit rather well, but it should be noted that fits 
were over just one or two bends, and the reaches selected 
were mostly 'well-known 1 meanders. Langbein and Leopold 
did not report fitting straight lines to the Psi-s plots.

Brice (1974a, p. 582) credited Langbein and Leopold (1966) 
with having devised the technique of plotting azimuth (Psi) 
against distance as measured along the stream (s). However, 
Brice himself clarified the relation between planform 
geometry and straight segments of the Psi-s plot, stating 
that "segments of the resulting plot, which have a uniform 
slope, represent arcs of uniform curvature" (Brice, 1974a, 
p. 582). Brice claimed that arcs of constant curvature are 
more common in natural .channels than the 1/3 proportion 
suggested by Leopold and Langbein (1966, p. H4) for equi 
librium channels. Brice fitted line segments to portions 
of the Psi-s plot "by eye" (p. 586) to identify segments of 
constant curvature. In another paper published the same 
year, Brice (1974b) restated the description of his method, 
and emphasized the fact that horizontal segments of the 
Psi-s curve represent straight lines in cartesian space 
(Brice, 1974b, p. 185).

PSI-S PLOTS AND THE ANALYSIS OF DIGITAL CARTOGRAPHIC LINES

One major advantage of using a Psi-s representation is that 
when digitized points are equally-spaced along the carto 
graphic line (spacing = ds), the line is completely char 
acterized by a vector of direction (Psi) values. Clearly, 
the storage of a cartographic line is greatly reduced if 
direction (Psi) measurements are stored as a vector with 
known spacing of s rather than a paired set of x-y co 
ordinates. Additionally, techniques of line generalization 
can be applied to the Psi-s representation to further 
reduce storage requirements of the line.

Line Generalization Using the Psi-s Curve.
O'Neill (198^1 used the Psi-s representation in a new 
approach to cartographic line generalization. Just as a 
complicated cartographic line can be approximated (to some 
specified accuracy) by a series of straight line segments 
in the plane (Douglas and Peucker, 1973), so can such a 
line be approximated by straight line segments on the Psi-s 
plot. Note that this is equivalent to approximating the 
line by a sequence of straight lines and circular arcs in 
cartesian space. A slightly modified version of the 
Douglas-Poiker line generalization algorithm (Douglas and
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Peucker, 1973) can be used here; the modification is 
needed because the axes of the Psi-s plot are not dimen- 
sionally homogeneous.

One solution is to measure deviations from a straight line 
in a direction parallel to the Psi-axis. If all points 
over some range of s lie within the specified tolerance, 
then the segment can be represented as a circular arc; 
otherwise, the point of maximum deviation is found, and the 
test is applied recursively to the two halves of the 
segment.

and Feature Identification for Cartographic

Recently, Mark (1986) discussed how the Psi-s represent 
ation can be used to identify contour crenulations in 
digitized versions of contour lines on pediments and 
alluvial fans. In the Psi-s representation, a contour 
crenulation appears as an abrupt change of almost 90

+ 90
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Figure 4: A portion of a contour crenulation (A) 
and the associated Psi-s plot (B). The place 
where the contour crosses the channel ("c") has 
the largest angular change on the Psi-s plot, 
[after Mark, 1986, p. 231].
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degrees (pi) as the contour enters the small valley in 
which the channel lies ("b" in Figure 4), a change of 
almost 180 degrees (2 pi) in the opposite direction as the 
contour crosses the channel ("c" in Figure 4), and finally 
another 90-degree (pi) turn as the contour leaves the 
valley ("d" in Figure 4). The recognition of these 
features is facilitated through the calculation of the 
first differences of this series (departures from a 
straight line at each polyline vertex). Note that the near 
180-degree change uniquely identifies the down-slope 
direction in this environment. Line segments "a" and "b" 
in Figure 3 represent two clearly-marked 180-degree 
direction changes at contour crenulations.

SUMMARY

The Psi-s curve has already proven to be a powerful 
representation for the analysis of river meander planform. 
It also has considerable potential in automated class 
ification and feature recognition for digital cartographic 
lines. The use of the Psi-s curve should provide more 
compact yet effective generalizations of certain carto 
graphic lines than can geometric generalizations in x-y 
space. Any geographic lines which include substantial 
proportions of circular arcs should be more effectively 
handled in the Psi-s representation, whereas the represent 
ation should be of little or no advantage for irregular 
lines (those which resemble fractals). Circular arcs are 
common components of rivers, roads, and railroads. Trans 
formation to a Psi-s plot may not be worthwhile for coast 
lines and contours, unless feature recognition or shape 
characterization is the objective.
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