
THE USE OF RANGE-TREE SPATIAL INDEXING 
TO SPEED CIS DATA RETRIEVAL

by
Bruce Blackwell, Chief Scientist

AUTOMETRIC, INCORPORATED
5205 Leesburg Pike,
Suite 1308/Skyline 1

Falls Church, VA 22041

ABSTRACT

Rapid spatial retrieval of data elements is an essential part of an 
efficient CIS. Many index structures have been used in the past. 
This paper discusses the use of a new concept, range trees, in these 
applications. Range trees are well suited to indexing GIS data 
elements which have finite extents in the 2-D plane and which 
arbitrarily may be clustered. Range trees are fast and well 
structured for dynamic disk resident indices. Furthermore, they are 
readily extensible to multiple dimensions, raising the possibility of 
volume searches and even extension to attribute space.

INTRODUCTION

Range-trees, hereinafter referred to as R-trees, were first 
introduced as a spatial indexing strategy for multi-dimensional data 
by Guttman (1984). Their development was guided by the inadequacy of 
other indexing methods for handling data elements of finite extent 
and of arbitrary distribution in a space most common of two 
dimensions, but more generally of any number of dimensions. 
Competing index structures include binary trees, cell methods, quad 
trees, k-d trees, and K-D-B trees. All of these suffer from one or 
more severe limitations in geodata applications. Binary trees are 
based on only one dimension. Even if multiple trees are built to 
handle more dimensions, retrieval "bands" must be intersected through 
sequential comparisons to find the desired data elements. All 
methods require specification of boundaries in advance and are hence 
inefficient if clustering of data elements occurs, as commonly 
happens with GIS data sets. Much work has been done on quad-trees 
and k-d trees, but the application of these structures almost 
requires that they be implemented in random access memory, since the 
node sizes are smaller than any common physical disk storage device 
data block, and are therefore inefficient for disk resident 
indices. K-D-B trees cannot index data elements of finite spatial 
extent. R-trees do not suffer from any of these limitations. 
Furthermore, R-trees are the only indices in current use that are 
readily extensible to more than two dimensions for special 
applications.

A full description of the structure, creation, and use of R-trees is 
contained in the literature (Guttman, 1984). Only a review will be 
given here, with emphasis on GIS applications. Figure 1 is an 
example of a portion of a GIS arc-node database. A single arc is 
highlighted with a bold line, together with a box known as the 
minimum bounding rectangle (MBR) of the arc. The MBR is a rectangle 
with sides parallel to the axes of the coordinate space which defines 
the minimum and maximum spatial extent of the coordinates delineating

195



the data element, in this case an arc. There would also be MBR's 
associated with nodes and polygons in the database. The MBR of a 
node is, of course, a degenerate case. MBR's have been used 
frequently in CIS designs as the basis of spatial research for data 
elements. It is the MBR's of data entities which are used in the R- 
tree index. An R-tree is a balanced tree structure wherein each R- 
Tree node contains a number of entries, and each entry consists of a 
pointer to a child node and the MBR of the child node. The MBR of a 
node is the least rectangle containing the MBR's of all its 
children. Two levels in the R-tree have special significance. There 
is a single node at the beginning of the tree called the root. At 
the end level of the tree, the nodes are called leaves and the child 
pointers are to database entries themselves rather than to lower 
level nodes in the tree. Recursive algorithms for initially 
populating, updating, and searching the R-tree have been well defined 
(Guttman, 1984). A small R-tree example is shown in Figure 2.

NODE

ARC

Figure 1. R-tree Example

Two aspects of R-trees are particularly important in applications: 
node size and node-splitting. Two parameters determine the number of 
child entries in each node; m, the smallest number of entries 
allowed, and n, the largest number allowed. No node, except the 
root, can have fewer than m entries. The parameter n is critical to 
input/output efficiency for disk-resident R-trees and should be 
chosen so that the physical disk block size B is given by:

B = ^ S + S ^ n + °» where:

ni<olr IK
are t^e storage required for the child MBR and pointer

entries;

0 is the overhead in each node, flags, etc.; and

B typically ranges from 256 to 2048 bytes for different direct 
access storage devices.

196



R2l

R1

T

R2 R3

T
ROOT LEVEL

R4 R5

r
R6

T'I'll
2 R7 R8

»

R9

TT r-i
R10

T

R1 1

T

Ria

T
LEAF 

LEVEL

TO ENTITIES IN DATA BASE 

2-LEVEL TREE SHOWN, MORE LEVELS POSSIBLE

Figure 2. R-tree Spatial Search Index

When a new entry is to be made in the tree, the algorithm (Guttman, 
1984) picks the leaf node for insertion which would have to be 
enlarged least to accommodate the new entry. If this leaf already 
contains n entries, it must be split. Node-splitting is critical to 
future search performance of the tree. Exhaustive, quadratic cost, 
and linear cost algorithms were explored by Guttman (1984). In my 
laboratory, I have employed a modified form of Guttman's linear cost 
algorithm with excellent results. Recently, it has been suggested 
(Roussopoulos and Leifker, 1985) that for relatively static spatial 
databases, a special packing algorithm be employed for initial 
population of the R-tree, since Guttman 1 s recursive insertion can 
lead to inefficiencies in terms of total coverage area and coverage 
overlaps. While true, it has been my experience that in a CIS 
production environment the R-tree is built from the bottom for each 
geounit during data extraction, meets interactive search response 
time requirements, and the commonality of software between initial 
population and dynamic updating is a great advantage. There is 
nothing to prohibit later restructuring of the R-tree with optimized 
packing algorithms if desired, once a condition of data status is 
achieved.

197



EXPERIENCE WITH R-TREES IN A CIS LABORATORY

Application
Autometric, Inc. is working with a CIS in its laboratory which is a 
fully topologically integrated arc-node data structure. Cartographic 
information, that is, features, are maintained in a separate set of 
records which link component topological node, arcs, and polygons. 
Stored with the features, or in a companion relational database, are 
feature attributes. The topological arcs and nodes carry the spatial 
component of the information. For each geounit, then, there are two 
separate file aggregates which are networked together, the 
topological/spatial and the feature files. Each entity in each file 
has an MBR associated and stored with it. The MBR of a feature is 
derived by combining the MBR's of its component topological parts.

R-trees are built for both the topological and feature files as each 
element is entered in the database interactively at the workstation. 
The R-tree serve several purposes:

Display Windowing. The user is able to select, via cursor or 
keyboard entry, a new display window. The geographic coordinates of 
the new window are used as input to an R-tree search to determine the 
list of entities to be displayed. If a symbolized display is 
desired, the search proceeds through the feature R-tree, and graphics 
lists are derived subsequently by following links to the topology. 
If a topological network display is desired, the search proceeds 
through the topological R-trees.

Cursor Location in the Topology. Formation of topology is done 
"on-the-fly"while digitizing or editing from photo or cartographic 
source. The operator can place the cursor anywhere in the geounit 
area, create a node, snap to an existing node or arc, and digitize 
arcs. The topological R-tree is used to rapidly obtain such 
information as the containing polygon, the nearest node, or the 
nearest arc. Upon completion of digitizing an arc, the arc MBR is 
built up from its component spatial coordinate list and is passed 
through the R-tree to retrieve any other arcs in the neighborhood. 
These arcsare tested for intersections with the candidate arc. If 
the arc is acceptable, it is entered in the database and in the R- 
tree. If the arc divides a polygon, two new polygons are formed and 
the old is deleted, both in the database and in the R-tree. The R- 
tree, therefore, serves as an adjunct to database navigation and 
edit.

Entity "Pick" Functions. Cartographic features are assigned to 
component topological entities by picking nodes, arcs, or polygons by 
placing the cursor on or near them. The R-tree is used to find 
rapidly one or more candidates in response to the "pick" request. 
The candidate(s) is then checked on the basis of a spatial tolerance 
before being assigned to the feature.

Implementation
In the Autometric CIS laboratory, R-trees have been implemented, 
along with other CIS functionalities, on a VAX 11/750 computer. The 
workstation consists of an APPS-IV analytical plotter with graphic 
superpositioning, an ALTER digitizing table, a LEXIDATA color 
graphics terminal, and an A/N CRT and keyboard. The R-trees are 
disk-resident with a physical record size of 256 bytes so that each

198



R-tree node has a maximum of 12 entries. A typical data set size for 
a CIS geounit is 30,000 to 50,000 topological entities and 8,000 to 
12,000 cartographic entities.

Performance
With the data set size and R-tree organization described in the above 
paragraph, virtual windowing and entity pick functions can be 
performed with response times adequate to support interactive 
operations. The R-tree search time is well described by the 
following relation:

TR = A m log n + B

where

T™ = retrieval time, wall clock 

m = the number of retrieved entities 

n = the total number of entities in the R-tree index 

A = a constant

B = b constant

-4 
In our application, A is about 2.5 x 10 seconds and B is about 4
seconds. Note that the search time is linear in number of retrieved 
entities but logarithmic in the size of the database. The slow 
search time growth with tree size is a main advantage of tree 
structures.

Future Possibilities
Most of the nodes in an R-tree are at the leaf level, but most of the 
node traversals during search, intersection, and deletion take place 
at levels in the tree above leaf level. An obvious R-tree usage 
speed improvement could be obtained by holding all R-tree nodes above 
leaf level in random access memory. The number of node entities 
above leaf level is approximately equal to n/m (m-1) where n is the 
total number of database entries and m is the average node fill 
rate. For n = 50,000 and m = 10, the number of nodes above leaf 
level in 555, and these can be held in 140 k bytes of memory. 
Preliminary work reveals that a performance improvement of between 6 
and 10 to 1 is possible with this mechanism.

R-trees are in no way restricted to two-dimensional spatial 
indexing. They generalize readily to a space of an arbitrary number 
of dimensions. An obvious extension is to include the elevation of 
features in a 3-D minimum bounding rectangular solid (MBRS) and use 
the MBRS's to build an R-tree index. Such an index might be useful 
for the use of a CIS for the production of special products such as 
air navigation hazard guides. Less obvious is the possibility of 
treating attributes, properly hierarchically coded, as a "dimension" 
of an abstract space, and including the attribute dimension in the R- 
tree index. Such an implementation would permit rapid simultaneous 
spatial and cartographic layer retrievals from the database. For 
example, a query to obtain and display all hydrologic features in a 
horizontal zone could be quickly processed.

199



REFERENCES

Guttman, A. 1984, R-Trees: A Dynamic Index Structure for Spatial 
Searching: Proc. of ACM SIGMOD Conference on Management of Data, 
Boston, June 1984.

Roussopoulos, N. and D. Leifker 1985, Direct Spatial Search on 
Pictorial Databases Using Packed R-trees: ACM Transactions on 
Database Systems, Vol.5, 1985, pp. 17-31.

200




