
TIGRIS: 
TOPOLOSICALLY INTEGRATED GEOGRAPHIC INFORMATION SYSTEM

Dr. John R. Herring
INTERGRAPH Corporation

One Madison Industrial Park
Huntsville, Alabama 35807-2180

ABSTRACT

A Geographic Information System (GIS) requires both 
interactive edit/query, and power-ful spatial analysis 
capabilities -for large volumes o-f geographic data. This 
spatial analysis requirement has led to the investigation 
o-f the mathematical -field o-f topology. The major problems 
o-f previous topological systems have been the construction 
o-f a logically consistent topological structure and the 
integration o-f structured spatial data with nonspatial 
attribute data. The TIGRIS system incorporates both types 
o-f data into a single, highly interactive data base using 
an object oriented system on Intergraph's stand alone 
workstations. This paper describes TIGRIS and its design.

INTRODUCTION

In this section, we describe the problems TIGRIS was 
designed to solve and outline the approaches taken.

The primary problem o-f any GIS is the manipulation and 
query o-f large quantities o-f spatial data. The accepted 
theoretical solution is to topologically structure the 
spatial data. TIGRIS has a spatial structure that is based 
on a generalization o-f two dimensional cellular topology 
(Switzer, 1975), implemented with sound mathematical 
principles, and provably correct algorithms.

Many systems built on topology require post processing 
to create the topological structure -from coordinates input; 
separating data gathering, and data structuring -functions. 
This is unsatisfactory -for three reasons: it makes 
•feedback -from structuring impossibly slow; it limits or 
eliminates "what if" spatial queries; and it places the 
burden of defining spatial relations on the coordinates 
alone, which have inherent metric inaccuracies introduced 
by finite precision, finite representation of curves, and 
statistical limitations of data gathering technology. In 
TIGRIS, the extraction and structuring of spatial data 
occur in one process. Data is taken directly from the 
digitized input and placed into the topological structure, 
using algorithms optimized for topological extraction. 
TIGRIS also uses topology to automate and optimize analysis 
of the spatial data, relying heavily on the techniques of 
algebraic topology to limit computational loads. This 
makes TIGRIS a truly interactive spatial data base, that 
can update its topological structure "on the fly" while the 
user is digitizing or editing features.

A shortcoming of many GIS systems, that can cause 
performance problems, is the segregation of spatial and 
attribute data into separate management systems. This 
gives the system two different data interfaces, doubling

282



the complexity o-f I/O processing. TIGRIS combines spatial 
and attribute data into a single data base, supported by an 
integrated query language and so-ftware inter-face. This is 
made possible by basing TIGRIS on an object oriented data 
management system and programming environment (The Object 
Manager). Response times are maintained even with large 
data volumes through several approaches; optimized 
algorithms, spatial indexes (r-trees) to organize and 
cluster the data, and a power-ful dedicated processor 
(InterPro/Act 32C, UNIX based on the Fairchild Clipper 
processor (5 million instructions per second), with 
multiple support processors). Further, TIGRIS supports 
complex, nonhomogeneous -features (composed of arbitrary 
combinations of points, lines, and areas), multiple 
representations of features, and arbitrary feature to 
feature relations.

The result is TIGRIS, a highly interactive, powerful, 
spatial and geographic information system.

THE OBJECT MANAGER

The TIGRIS software environment is based on a design 
methodology called "object oriented programming". The 
Intergraph Object Manager (OM) combines data base 
management, I/O control, and process control into a 
complete object oriented design and implementation 
envi ronment.

Object oriented programming begins with the 
"encapsulation" of data into structures based on usage. 
All data structures of one type are called a "class"; each 
occurrence of a class is an "object" and an "instance" of 
its class. Each class is associated to a set of procedures 
("methods") for the creation, edit, query, and deletion of 
instances of the class. The methods define the interface 
to the instances of a class, ensuring a high degree of 
modularity through "data hiding" (only a class method can 
refer to the structure of a class). Each method is invoked 
on a particular object by a "message" send. Classes share 
"message protocols" through methods with identical names 
and parameters. Classes can be defined using other classes 
as part of their structure through "subclassing", and can 
"inherit" all methods and messages of the "parent" class. 
Subclassing and inheritance increase the reusability and 
modularity of the methods.

An object structure may include any number of named 
"channels" which hold pointers to other objects. Objects 
are related to one another through matched pointers in 
channels. Channel specifications determine whether the 
objects on a channel are ordered, and whether the relation 
is one to one, one to many, or many to many. Channels can 
be used to group objects for collective messages.

The abstract collection consisting of the class 
specification, methods, and messages is referred to as a 
"package". A package is a fundamental grouping in object 
oriented data abstraction.

283



DM takes care of creating and deleting objects and 
channel connections. OM further controls message sends, 
including any needed indexing and I/O. Thus, OM is a data 
base management system as well as a object oriented 
software environment.

More complete descriptions of the object oriented 
software philosophy, methodology, and benefits can be found 
in the references (Cox, 1986, and White, 1986).

THE TOPOLOGICAL STRUCTURE

The concepts that the TIGRIS system uses to organize 
and manipulate spatial data are derived from cellular and 
algebraic theories of topology. Topology is "coordinate 
free geometry"; the study of those geometric concepts that 
can be defined independent of any coordinate system. A 
concept is coordinate system independent if a continuous 
change in the coordinate system does not alter its 
definition. For example, a curve can be defined as a 
continuous image of an interval of real numbers. Changes 
in the coordinate system modify the defining function from 
the interval into the space, while the curve, as a ordered 
point set, remains the same. Since "curve" can be 
equivalently defined in all acceptable coordinate systems, 
"curve" is a topological concept. Other such topological 
concepts include connected, adjacent, dimension, bounded, 
boundary, inside, outside, and orientation.

Why is topology useful in spatial data systems? 
Without coordinate geometry, topologists are forced to 
frame geometric theory in symbolic terms, to translate tach 
geometric problem into an equivalent symbolic (algebraic) 
problem, to solve the symbolic problem, and to retranslate 
the results back into the geometric world. In this 
translation, the topologists gained a powerful symbolic 
tool for manipulating facts about geometric configurations. 
It is upon this tool that TIGRIS is based.

In using topological concepts to describe geographic 
objects, we split the spatial objects and relations away 
from their coordinate descriptions. These objects can then 
be manipulated without reference to their coordinate 
descriptions. Since the manipulation of coordinate 
descriptions is the usual bottle neck in spatial analysis, 
the coordinate—free, topological algorithms are often 
significantly more efficient than the coordinate based 
algorithms that they replace.

Topolooical Objects

The building blocks of two dimensional topological 
theory consist of points (nodes, O—cells), nonintersecting 
curves between these points (edges, 1-cells), and the 
connected two dimensional areas bounded by these curves 
(faces). TIGRIS faces are allowed to have "holes" or 
"islands", making them distinct from topological 2—cells.

At each point in the life of a TIGRIS data set, the 
allowable coordinate values are divided so that each point

284



is on one and only one topological object. At the very 
beginning, after the set has been initialized, but be-fore 
any digitization occurs, the data set consists o-f a single 
face, that covers the entire coordinate space (called 
face_l in TIGRIS). During the addition o-f spatial data, 
one o-f several things may occur: an isolated node may be 
added to the interior o-f some face; a node may be added to 
the interior of some edge, splitting that edge into two 
edges; an edge may be placed between two nodes in such a 
manner as to not split a face; or an edge may be placed 
between two nodes splitting a face into two faces.

Topological Relationships

The topological structure of a map resembles a jigsaw 
puzzle. The edges and nodes are analogous to the cut lines 
of the puzzle, and the faces to the puzzle pieces. The 
difference is that in the topological structure, the 
"pieces" are aware of their relationships with other 
adjacent "pieces". This means that the topological puzzle 
can assemble itself, since each piece "knows" how it is 
related to its surroundings and, thus, how it is related to 
the entire puzzle.

The relations between the topological objects are based 
on the notion of a "boundary". The boundary of a node is 
empty; the boundary of an edge consists of the two end 
point nodes of that edge; and the boundary of a face 
consists of the all the nodes and edges "close to" the face 
(including any isolated nodes). The coboundary relation is 
the reflection of the boundary relation. The coboundary of 
a face is empty. The coboundary of an edge consists of the 
two faces on either side of that edge. The coboundary of a 
node (node star, node umbrella) consists of all of the 
faces and edges that surround that node. The remaining 
topological information relates to the order in which 
things appear in the boundary and coboundary of the 
topological objects. The general term for this order is 
"orientation." The orientation of the topology derives 
from the establishment of a direction for each edge 
corresponding to the order in which its coordinates are 
stored. The end points of the edge are called the "start 
node" or the "end node" depending on whether the node point 
is first or last in the edge coordinate list. The two 
faces either side of the edge are called the "left face" or 
the "right face" depending on the sign of the angular 
direction of the face as locally measured from the tangent 
to the edge (left is positive, corresponding to a positive 
angle as measured from the tangent). The orientation of 
the boundary of a face, derived from "left is positive", is 
counterclockwise for the exterior boundary components and 
clockwise for the interior components. Thus, the boundary 
of the face consists of some number of circular lists of 
signed edges alternating with nodes. The sign of the edges 
corresponds to the leftness or rightness of the face with 
respect to the edge. Each isolated node is included as a 
separate boundary component. The orientation of the 
coboundary of a node is induced from the orientation of the 
surrounding faces. At first it is a bit counter—intuitive, 
but this orientation is in fact clockwise (rightward or 
negative) and not counterclockwise (see Figure 1).

285



Figure 1: The Geometry of Orientation

START NODE ,

resultant 
node orientation

"Right face

LEFT FACE 

EDGE

Left face 
boundary 

orientation
X

resultant _.) 
node T 
orientation

boundary 
orientation RIGHT FACE

\ END NODE

When designing the algorithms, it becomes apparent that 
relationships to edges -fall symmetrically into precisely 
two types: positive or negative orientation. To simpli-fy 
code, and to eliminate orientation -fields within channels, 
a new object type, called the "directed edge", was 
introduced. A directed edge is used ,to represent one of 
the two orientations o-f an edge and can act in place of the 
edge when a particular orientation is needed. There are 
precisely two directed edges for each edge: the positive 
and the negative incarnations.

It is important to distinguish the concept of directed 
edge from that of edge. An edge is a topological entity 
that has a spatial definition. A directed edge represents 
an oriented relationship with its associated edge and is 
not truly a geometric object at all. The directed edge can 
be considered as an alias for its underlying edge. To 
preserve the order of the directed edges about a face, 
links are provided from each directed edge to the one next 
counterclockwise about the face (see Figure 2).

Figure 2: The Geometry of the Topological Classes
Isolated 
Node

Face

THE FEATURE STRUCTURE

At the topological level of TIGRIS data, each object 
corresponds to a fundamental geometric entity (node, edge, 
or face). The next level collects topological objects into 
features components. Feature components are subclassed as 
point, line, or area depending on whether they are composed 
of nodes, directed edges, or faces, respectively. Feature 
components represent the simplest, physically homogeneous

286



•features represented in the data, <road segment, river 
reach, forest stand). The next and subsequent levels 
collect -feature components and other -features into more 
complex and abstract entities (river systems, roads, 
administrative districts).

These classes provide the data structures with which a 
schema can be built. In the schema, each cartographic 
entity is de-fined as a "dynamic class." A dynamic class 
de-finition consists of three pieces o-f information: the 
name of the base class (point, line, area feature 
component, or feature), a list of attributes, and any 
additional channel restrictions in terms of which dynamic 
classes each object channel may contain. For example a 
river system might have a "name" attribute and its composed 
of channel might contain stream segments and lakes (see 
Figure 3). All inter-object relations are in Figure 4.

Figure 3: A Complex, Heterogeneous Feature

Figure 4: Class Relations

Face

, ,

=0 —— c» Directed 
Edge

^ ^
1

Edge

SJ ——

et—
—O Node

t i

287



ALGORITHM DESIGN

This section describes some basic considerations in the 
algorithm design -for the edit and query o-f TIGRIS data, and 
shows how the object oriented methodology has led to an 
e-f-ficient implementation of the ideas explained previously.

Spatial Localization; Intersection Search

One o-f the keys to the speed of the TIGRIS editor is 
the localization of algorithms. The topological structure 
expresses geometric relationships without reference to the 
coordinate data. Thus, if a process can be made to deal 
with the geometry in a localized manner, then topological 
linkages can be used to traverse the data in the order the 
process needs it. Thus, process time becomes a function of 
local complexity.

A example of this localization is the process of adding 
a new line feature to the data set. In this process, a 
coordinate string is specified and the topology updated to 
add the appropriate edges to the data set. The update of 
the relations for the new edge, although not simple, is 
straight forward, once the two associated nodes and the 
face to be crossed have been determined. The bottle neck 
is the search for the intersections of the new coordinate 
string with itself or with existing topology (the position 
of the nodes). The algorithm described here is a 
simplified version of the one used in the editor, but it 
suffices to illustrate the point.

The first step is to locate the position of the 
starting point of the new line feature with respect to the 
topology. A global r—tree index search (a subject for 
another paper) of the data locates the face, edge, or node 
upon which the first point lies. This is an index send of 
the query message "is on" to all topological objects, 
nodes, edges, and faces. OM terminates the send mechanism 
when a successful answer is obtained. If necessary, a node 
is added at this point.

With the determination (or creation) of the starting 
node and the specification of the second point, the add 
line process localizes. If the first node is isolated, the 
first intersection of the new line with the existing 
topology will occur on the boundary of the face in which 
this node lies. When the first node is not isolated, the 
exit angle of the first coordinate determines which face 
(or edge) the line moves through. This is a send of the 
query message "compare exit angle" from the node to each 
associated directed edge. In all cases, the search for the 
next intersection is a local problem.

Once the line has moved away from existing edges and 
nodes, for each new point, the line segment from the last 
point is compared with the edges and nodes bounding the 
face being crossed. Since the face is now known to the 
line method, a "find cross" message is sent to it with the 
new line segment. The face passes the message on to its 
isolated nodes and directed edges. The directed edges pass 
the message on to edges and nonisolated nodes. If no

288



intersection is -found -for this -face, then it is known that 
no intersection exists and the next data point is taken. 
Once an intersection is found, the topology is modi-fied and 
the -feature is integrated into the data set up to the point 
o-f intersection (now a node).

At this node, the exit angle o-f the line is compared 
with existing edges to determine which face or edge the 
line will follow when exiting the node. A new face is 
established and the process repeats until the last point in 
the line is placed. The entire add line process is 
accomplished with minimal unproductive intersection search.

Spatial Factoring; Green's Formula and Point—In—Polygon

Another key to programming in TIGRIS, is the spatial 
factoring of algorithms. This approach to algorithm design 
breaks the process into subprocesses determined by the 
spatial subcomponents.

A prime example of spatial factoring is the line 
integral used to calculate the area and orientation of 
polygons such as face boundaries. Green's formula (a 
special case of Stokes' theorem) equates twice the area 
enclosed within a positively oriented closed curve and the 
integral of x dy - y dx along the curve itself. Integrals 
are the prime example of spatially factorable problems. 
The reason for this is that if three points, PI, P2, and 
P3, lie on a curve, and G(.,.) is an integral expressed as 
an operator on the limits of integration then

G(P1,P2) = G(P1,P3) + G(P3,P2). 
and

G(P1,P2) = - G(P2,P1)

Thus, Green's integral around the boundary of a face is 
fqual to the sum of the integrals along the associated 
directed edges. Further, the integral along a directed 
edge equals the integral along the edge multiplied by the 
orientation. Thus, a face, queried for its area, zeros a 
variable and sends it as a parameter in a Green's integral 
message to all of its directed edges. The directed edges 
pass on the message to the edges, adding their orientation 
to the parameter list. The edges, which store the 
geometry, calculate the integral, multiply by orientation, 
and sum in their contribution to the passed parameter. 
When completed, the parameter is the area of the face.

The point—in—polygon test for faces is similar. The 
problem is, given a coordinate point and a face, to 
determine if the point is interior to the face. The 
classic solution is to intersect a ray from the point to 
infinity (such as the one parallel to the x—axis) with the 
boundary of the face and count the intersections (ignoring 
noncrossing tangents). If there are an even number of 
crossings (or none), then the point is not in the face. If 
there are an odd number of crossings, then the point is 
interior to the face. In TIGRIS, this has been modified to 
count crossings with orientation, 1 for an upward going 
crossing and -1 for a downward going crossing. The answer 
returned by a face is either O or 1 (-1 is possible for

289



•face 1). The crossing count function acts much as an 
integral, except that geometric observations can simplify 
the calculations. I-f the edge's minimum bounding rectangle 
does not intersect the ray, then the edge's crossing count 
is zero (no cross can occur). I-f the edge's minimum 
bounding rectangle does not contain the point, then the 
count is the same as that o-f the line joining the start 
node and end node of the edge (other crossings cancel in 
pairs) .

In the point—in—polygon, the factoring did not lead 
directly to an increase in efficiency, but allowed 
optimization based on geometric reasoning. In the 
topological version, each edge, except those whose minimum 
bounding rectangle includes the point in question, is 
treated as a whole, the count made using only the end 
paints. In real data, the number of coordinate points in 
an edge can average 50 to 100 points. Thus, an increase in 
algorithmic efficiency by a factor of 50 to 10O can be 
reasonably expected.

Spatial Without Coordinates; Adjacency

In TIGRIS, all features derive their spatial extent 
through relationships to topological objects and all 
topological relationships are explicitly stated or easily 
derived from explicitly stated relationships. Thus, all 
queries based on topological relationships can be answered 
without reference to coordinates.

Consider the query "select all pine forests adjacent to 
roads." The forest half of the operation entails finding 
the pine forest, following a sequence of channels to locate 
all faces that make up the pine forests, and then following 
the face channels to all edges that lie adjacent to the 
pine forest (see Figure 5). The road half of the operation 
follows line to directed edge to edge channels to find all 
edges that are roads. By comparing these sets of edges, 
the query can be answered easily.

Figure 5: An Adjacency Query Path

290



An easy implementation o-f spatial query Mould use a 
query mask stored within the objects. In the example 
above, a message is sent by an index on -forest type to the 
pine -forest, and is passed on to the pine -forest -faces. 
The -faces pass the message to the directed edges which pass 
the message to the edges to clear the query mask. A 
message is sent through roads, to directed edges, to edges 
to set the mask. A -final message is sent through the
•forest (to -faces, to directed edges) to the edges to check 
the query mask. The edges with the query mask set are the 
ones where roads lie adjacent to pine -forest. The pine
-forest object sending the message is the one adjacent to 
the road. The sequence o-f messages have identified the 
pine -forest adjacent to the road as well as the location o-f 
the road.

The time required to per-form this spatial query is the 
sum o-f two message propagations through the pine forest and 
one propagation through the roads. This is a significant 
difference from the problems involved in a pure spatial 
intersection. Further, the algorithm takes great advantage 
of the parallelism of the message-send subroutine stack and 
the object relation graph, since when a edge finds a set 
query mask, it returns a success code directly to a method 
on the member of pine forest that is its owner.

CONCLUSIONS

The synergism between the topological representation of 
geographic data and the object oriented design philosophy 
has enabled TIGRIS to meet its major design goals of 
providing the geographic user with an interactive edit, 
query, and spatial analysis tool based upon integrated 
topological, spatial and attribute data. This in turn, 
should allow TIGRIS to redefine the capabilities expected 
of a BIS.

References

Artin, E. , and Braun, H. , 1969, Introduction to Algebraic 
Topology. Charles E. Merrill Publishing Company, 
Columbus, Ohio

Cox, B. J., 1986, Object Oriented Programming. An 
Evolutionary Approach. Addison-Wesley Publishing 
Company, Reading, Massachusetts

Lefschetz, S., 1975, Applications of Algebraic Topology. 
Springer—Verlag, New York

Switzer, R. M., 1975, Algebraic Topology - Homotopy and 
Homology. Springer-Verlag, Berlin

Spanier, E. H., 1966, Algebraic Topology. McGraw-Hi11 Book 
Company, New York

White, E., and Malloy, R., ed., 1986, Object Oriented 
Programming, BYTE, August 1986, pp 137-233

291




