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ABSTRACT

A broad range of applications, from military programs to survey and land use sys 
tems, rely on Digital Terrain Models (DTMs) for timely and accurate information. 
As more and more applications make use of this data, demands for both greater 
land coverage and finer, more accurate details are on the increase. Meeting these 
requirements can result in vast volumes of data which strain the memory limits of 
a computer system. Large digital elevation models can also create a bottleneck in 
the input/output processes and 3-D perspective rendering algorithms. Therefore, 
algorithms that generate compact and accurate elevation models are an important 
topic for research. We present one such algorithm here.

This paper describes a triangulation method which builds a DTM from a series of 
critical line features such as elevation contours, ridge and valley lines, and other 
breaklines. The method described is an improvement over current techniques 
because it triangulates any set of critical lines without human intervention, 
retains the original lines in the triangulation, adds no more than four points to 
the data, and runs relatively fast. Implementation results are given at the conclu 
sion of the paper.

INTRODUCTION

Digital Terrain Models (DTMs) contain important topological information for 
applications such as 3-D terrain modeling, simulation, navigation, hydrology stu 
dies, visibility calculations, and route planning. For all of these applications, 
increasing demands for both greater land coverage and finer, more accurate details 
result in greater data volumes. For example, a typical DTM covers a one degree 
cell, which is about 3600 square nautical miles, an area smaller than Connecticut. 
With the elevations sampled every 3 arc seconds, or slightly less than 100 meters, 
this DTM occupies about 3 megabytes of memory. Elevations sampled at 10 
meter intervals, a more desirable resolution for applications that rely on the 
DTM's accuracy, will occupy 300 megabytes for the same coverage. The United 
States covers over 3 million square nautical miles, so a data base for that area will 
grow correspondingly. This increase in data volume can strain the memory limits 
of a computer system. Large volumes of data also create a bottleneck in the 
input/output processes and 3-D perspective rendering algorithms. Therefore, an 
ideal DTM will provide highly accurate data in the smallest possible storage 
space.

DTMs developed from maps and imagery are generally stored either in a grid for 
mat or as a triangulated irregular network (TIN). Figure 1 shows how a simple 
contour map might be converted to these two formats.

146



2 2 2.: 444J222 
2 2..-'4 4..'6\4 J8':.4\2 

2.4 4 : '6 6 6 J8 8' p : 4 
444 =.6 6.-'4 U 8 j 8 
4   2""2':-4""4 4 4"4 4

6 6'\4 4-32222 
8"8'- : 6"6'- : 4""4'-.J2 2 2 

8 8J 6 6 j 4 4 4'' : 2 2 
8  '& 6 6 =4 4 4 J2 2

Elevation Contours Grid Format Delaunay TIN 

Figure 1. DTMs created with Grid Sampling and Delaunay Triangulation

Grid Sampling

Terrain in a grid format is represented by evenly spaced elevation samples or 
posts. DTMs produced by the U.S. Geological Survey and Defense Mapping 
Agency are of this form. Although a grid structure is easy to manipulate, it is lim 
ited by its dependence on the sample rate. For example, widely spaced elevation 
posts may miss important terrain features, producing an inaccurate model. This is 
clearly demonstrated by comparing DTMs of the same area created with different 
sample rates as shown in Figure 8 and Figure 9. It is for this reason that recent 
studies (such as U.S.A.E.T.L. 1987) call for the generation of data with 10 meter 
resolution or better.

Contrarily, narrow spacing between posts greatly increases the data volume, 
sometimes unnecessarily. For example, samples taken over a relatively flat area 
are translated into many polygonal facets when only a few are necessary. This can 
greatly increase the cost of computer image generation. Figure 1 shows how a grid 
structure can both contain many more samples than necessary in one area, yet 
miss important terrain features in another area.

Triangulated Irregular Networks

TINs, on the other hand, contain only those points which significantly affect the 
topology of the terrain. Included are points along contour lines or ridge and valley 
breaklines, as well as peaks and pits. These points are linked by edges that define 
a network of triangular facets conforming to the terrain. TIN structures are widely 
used in commercial geographic information systems because high resolution may 
be achieved with relatively little data. For example, flat or smoothly sloped areas 
may be represented by only a few points, whereas the fine detail in rocky or irreg 
ular areas may contain a great number of points. TIN structures are also con 
venient for generating perspective views, as many rendering algorithms work best 
with triangles.

Numerous methods have been developed to generate TINs (for example Christian- 
sen 1978, Dennehy 1982, DeFloriani 1984, Watson 1984, Preparata 1985, 
Christensen 1987, Correc 1987, Dwyer 1987, McKenna 1987). Most of these algo 
rithms are based on Delaunay triangulation, which forms connections between 
nearest neighbors within a scattered set of isolated elevation posts (Preparata 
1985). Extensions to this algorithm typically increase time efficiency, simplify the 
steps in the algorithm, or add further structure to the TIN. However, Delaunay 
triangulation has one major drawback. It ignores the natural connections between 
points along contours and breaklines. These line segments are commonly used in
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maps to describe critical terrain features, and are frequently as important as the 
points themselves. As noted by Christensen (1987) and shown in Figure 1 , lines 
produced with Delaunay triangulation can cross these important breaklines, creat 
ing triangular plateaus over or under important features. This results in a 
misleading and inaccurate DTM.

The cartographic community has recognized this problem and proposed solutions 
which utilize connections between points along contour lines. However, these 
algorithms suffer because they require extensive human interaction (Christiansen 
1978), do not extend well to handle complex terrain (Dennehy 1982), or double 
the number of data points as a side effect (Christensen 1987). In addition, none of 
these algorithms can triangulate intersecting breaklines such as ridge and valley 
lines and contour lines merged with other breaklines.

THE NEW TRIANGULATION

Our problem was to devise a way of building accurate, yet compact DTMs from 
common input sources. These sources include contour maps and ridge and valley 
lines traced from stereo imagery. This data would be input as a series of con 
nected points forming closed polygons, open curves, connected graph structures, 
and a few isolated points. Our algorithm had to conform to these lines without 
adding data points.

The resulting algorithm, presented here, is an extension of Fournier and 
Montuno's 1984 triangulation algorithm developed for simple polygons with non- 
intersecting edges. This algorithm was an attractive basis for a solution to the 
more general terrain problem because

1. the polygon edges are inherently part of the triangulation, contributing at 
least one edge to each triangular facet

2. only the original points defining the polygon are used, resulting in a small 
data set

3. the algorithm is shown to run in O(n log n) time with a method that is rela 
tively simple to understand and implement.

Although theirs is an excellent academic treatise, the Fournier and Montuno tri 
angulation algorithm required a great deal of alteration before it could triangulate 
diverse terrain data. We created a valuable tool for terrain modelling applications 
by extending the algorithm to handle the following:

1. Any number of lines and points may be input. This makes the algorithm 
general enough to triangulate the data from any topological map.

2. Input points may be linked to form closed polygons, open chains of line seg 
ments, or even complex graph structures with several edges emanating from 
each point. This covers all combinations of contour lines, ridge and valley 
lines, and other breaklines which may occur in a topographic representation. 
Because maps often contain isolated peak elevations, isolated points may 
also be included.

3. Lines may connect points that have either a constant elevation (as do con 
tours) or variable elevations (common with breaklines).

The algorithm takes the following steps. First, the data is sorted on point posi 
tions. Second, the data set is decomposed into a series of trapezoids. Third, these 
trapezoids are split by new edges linking points on the trapezoids. Finally, all of
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the resulting edges, new and old, are used to define the triangular mesh. The 
remainder of this section describes these steps in detail.

Setup

Digitized contour lines and/or breaklines are input as lists of connected 3-D coor 
dinates. An edge list is maintained so that a point with multiple references may 
be condensed to a single point reference with multiple connections. Naturally, if 
two edges intersect, a point must be placed at the intersection. The only restric 
tion on the data is that elevations for repeated points must agree.

Two steps must be taken before triangulation. First, the points are sorted on their 
Y value, from bottom to top. Points with the same Y value are sorted on their X 
value, left to right.

Next, the points must be bounded by a single closed polygon. Although the 
bounding polygon can be any shape, we selected a rectangle for convenience. We 
determine the bounding rectangle for the data set, add points at the corners of 
that rectangle (if necessary), and add edges connecting points along the periphery 
of that rectangle. New points are assigned elevations which are the weighted aver 
ages of their neighbors' elevations, where neighbors are adjacent points connected 
by an edge.

Defining the Trapezoids

Decomposition of the data into trapezoids parallels the definitions and steps out 
lined by Fournier and Montuno (1984). As shown in Figure 2 , a trapezoid is 
defined as a four-sided figure with its top and bottom edges parallel to the X axis. 
These imaginary top and bottom edges each pass through one of the input data 
points. The side edges, left and right, come from the collection of connecting lines, 
which are defined by two endpoints each. Therefore, the program stores each tra 
pezoid as a list of six point indices, even though some of the indices may be 
repeated. For example, Figure 2 also shows that some trapezoids may look very 
much like triangles. In this case, the top point is also listed as a point on the left 
edge and a point on the right edge.

Top

Left 
Edge,

y

L. bottom

Right 
Edge

"liottom

Common Trapezoid Degenerate Trapezoid 

Figure 2. Trapezoids

Trapezoids are developed in the following manner. First, an active list of incom 
plete trapezoids is initialized. The trapezoids in the active list each have a bottom 
and two side edges, but no top edge. Initially, every active trapezoid has a bottom 
edge with the minimal Y value and side edges which are connections to points 
with the minimal Y value.
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Then each data point is examined once, in its sorted order. This point is used to 
complete active trapezoids and contribute to new trapezoids. First, the active list 
is searched for trapezoids which have side edges that either surround the current 
point or belong to that point's edge list. These trapezoids are said to be com 
pleted by the current point. Typically, a point with m edges extending downward 
will complete m+1 trapezoids, as shown in Figure 3 Thus, an unconnected point 
will complete one trapezoid. Once a trapezoid is completed, it is removed from the 
active list and placed on a separate trapezoid list, with the current point given as 
its top point. The data set is completely decomposed into trapezoids when all of 
the vertices have been examined.

point completes point contributes to 
4 trapezoids 3 new active trapezoids

Figure 8. How points contribute to trapezoids

Second, new active trapezoids are created and inserted to the list where the old 
ones resided. As shown in Figure 3 , a point with n edges extending upward con 
tributes to n+1 new active trapezoids. The current point is the bottom point of 
each new active trapezoid.

Original Input Trapezoid Decomposition 

Figure 4. Contours decomposed into trapezoids

Figure 4 shows how the elevation contours from Figure 1 would be decomposed 
into trapezoids.

150



Finding the Remaining Triangle Edges

Once all the trapezoids have been found, they are split into triangles by connect 
ing points that lie on opposing sides of the trapezoids. These splitting edges are 
added to the edge lists of the newly connected points. Each trapezoid that is com 
pletely split into triangles is removed from the trapezoid list. When the trapezoid 
list is empty, all necessary edges have been found. These new edges, combined 
with the original contour edges, will form the triangular network covering the ter 
rain.

Trapezoids are split in two passes. The first pass recursively splits individual tra 
pezoids. If two or more points lie on the top or bottom edge of the trapezoid, then 
these points are linked by new edges, added to the points' edge lists. Any point 
appearing on the top or bottom edge may then serve as the top or bottom point. 
If a trapezoid has a top point and bottom point which do not lie on the same side 
edge, then these points are also connected with a new edge. This splits the origi 
nal trapezoid into two new trapezoids, each of which are examined for further 
splits. Once a trapezoid becomes triangular in shape, and no more splits are possi 
ble, it is removed from the list. Figure 5 shows how the trapezoids from Figure 4 
would be split in the first pass.

Pass 1: 
split individual trapezoids

Pass 2:
split trapezoids collected 
as unimonotone polygons

Figure 5. Splitting trapezoids

After the first pass, all remaining trapezoids on the list may be collected to form 
one or more unimonotone polygons (Fournier 1084). A unimonotone polygon is 
characterized by a single major edge and a two or more minor edges. The major 
edge is defined by two endpoints which have the maximum and minimum Y 
values for the polygon. All points on the minor edges fall within this vertical 
range. Therefore, all remaining trapezoids with the same major edge are part of 
the same unimonotone polygon.

The second pass splits the unimonotone polygons into triangles. Two approaches 
may be taken to decompose each unimonotone polygon into triangles.
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1. If a point on a minor edge is linked to the major edge, a triangle may be 
formed by connecting its minor neighbor to its major neighbor. The new 
edge must fall within the unimonotone polygon, and therefore the angle 
formed by the two pre-existing edges must be checked.

2. The two minor neighbors of a minor point may be linked by an edge if that 
edge falls within the unimonotone polygon.

Figure 5 also shows how the remaining trapezoids would be split in the second 
pass.

Collecting Edges to Build Triangles

The edges splitting the trapezoids, along with the original edges, form a triangular 
network covering the area within the original bounding polygon. In the final step, 
these edges are organized to form a triangle list. This is done by repeating the fol 
lowing steps for each vertex.

1. The current point's connecting edges are sorted in counter-clockwise order.

2. Each pair of adjacent edges on the sorted list form a triangle, because the 
points at the ends of those edges are linked to one another. Add this triangle 
to the list only if the indices of the two end points are greater than the 
index of the current point. Otherwise, this triangle is already on the list.

IMPLEMENTATION

To test our algorithm, we traced contour lines from the field map shown in Figure 
6 and fed them to our triangulation routine. This small test area covers 304x482 
meters, and is represented by 2014 points. Our routine triangulated this data in 
4.85 CPU seconds on a VAX/8530, with 0.35 seconds of that time spent on the 
initial sorting. The resulting DTM contains 2018 points on 4020 triangles. Figure 
7 shows a perspective view of this data.

For comparison, we also generated a grid format DTM from the same contour 
map. This data was sampled at a regular post spacing of 2 meters and placed in a 
grid structure containing 152x241 points, or 72480 triangles. Figure 8 shows the 
resulting grid rendered in perspective. Although this produces an equally accurate 
representation of the scene, it also contains 18 times the number of points and tri 
angles contained in the TIN. We also sampled the data with 8.25 meters between 
posts to produce a grid data set with approximately the same number of points 
and triangles as the TIN. Figure 9 shows the lower resolution data set rendered in 
perspective. Notice how much detail is lost in the lower resolution.

TABLE 1. Triangular vs. Grid DTMs
DTM

Triangulated 
Contours
2m posts
8m posts

No. of Points

2018

36,632
2088

No. of Polygons

4020

72,480
3990

Render Time (min.)

2:46.04

3:52.14
2:36.66

Table 1 summarizes our results. Rendering time is measured as minutes of CPU 
time on a VAX/8530. It is important to note that this sample area is small rela 
tive to the coverage required by most applications. Thus, the savings incurred by 
the triangulation will be greater as the area of interest grows.
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CONCLUSION

At a time when demands for highly detailed data over large areas is placing a 
strain computer systems, we have demonstrated that TINs can represent details 
far more compactly than a grid format. Furthermore, we have presented a proven 
algorithm that produces a DTM from critical line features in a reasonable amount 
of time. This algorithm is superior to previous algorithms because it 1) maintains 
the integrity of the critical lines, 2) triangulates any series of input lines, including 
intersecting lines, without requiring any human intervention, and 3) adds no more 
than 4 points to the original data set.
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STANDARD SCENE No.l

Figure 6. Field map used as input for triangulation

Figure 7. Triangulated field map
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Figure 8. Grid data, sampled every 2 meters

Figure 9. Grid data, sampled every 8.25 meters
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