
A COMPACT TERRAIN MODEL
BASED ON CRITICAL TOPOGRAPHIC FEATURES

Lori L. Scarlatos
Grumman Data Systems

1000 Woodbury Road
Woodbury, NY 11797

ABSTRACT

A broad range of applications, from military programs to survey and land use sys
tems, rely on Digital Terrain Models (DTMs) for timely and accurate information.
As more and more applications make use of this data, demands for both greater
land coverage and finer, more accurate details are on the increase. Meeting these
requirements can result in vast volumes of data which strain the memory limits of
a computer system. Large digital elevation models can also create a bottleneck in
the input/output processes and 3-D perspective rendering algorithms. Therefore,
algorithms that generate compact and accurate elevation models are an important
topic for research. We present one such algorithm here.

This paper describes a triangulation method which builds a DTM from a series of
critical line features such as elevation contours, ridge and valley lines, and other
breaklines. The method described is an improvement over current techniques
because it triangulates any set of critical lines without human intervention,
retains the original lines in the triangulation, adds no more than four points to
the data, and runs relatively fast. Implementation results are given at the conclu
sion of the paper.

INTRODUCTION

Digital Terrain Models (DTMs) contain important topological information for
applications such as 3-D terrain modeling, simulation, navigation, hydrology stu
dies, visibility calculations, and route planning. For all of these applications,
increasing demands for both greater land coverage and finer, more accurate details
result in greater data volumes. For example, a typical DTM covers a one degree
cell, which is about 3600 square nautical miles, an area smaller than Connecticut.
With the elevations sampled every 3 arc seconds, or slightly less than 100 meters,
this DTM occupies about 3 megabytes of memory. Elevations sampled at 10
meter intervals, a more desirable resolution for applications that rely on the
DTM's accuracy, will occupy 300 megabytes for the same coverage. The United
States covers over 3 million square nautical miles, so a data base for that area will
grow correspondingly. This increase in data volume can strain the memory limits
of a computer system. Large volumes of data also create a bottleneck in the
input/output processes and 3-D perspective rendering algorithms. Therefore, an
ideal DTM will provide highly accurate data in the smallest possible storage
space.

DTMs developed from maps and imagery are generally stored either in a grid for
mat or as a triangulated irregular network (TIN). Figure 1 shows how a simple
contour map might be converted to these two formats.

146

2 2 2.: 444J222
2 2..-'4 4..'6\4 J8':.4\2

2.4 4 : '6 6 6 J8 8' p : 4
444 =.6 6.-'4 U 8 j 8
4 2""2':-4""4 4 4"4 4

6 6'\4 4-32222
8"8'- : 6"6'- : 4""4'-.J2 2 2

8 8J 6 6 j 4 4 4'' : 2 2
8 '& 6 6 =4 4 4 J2 2

Elevation Contours Grid Format Delaunay TIN

Figure 1. DTMs created with Grid Sampling and Delaunay Triangulation

Grid Sampling

Terrain in a grid format is represented by evenly spaced elevation samples or
posts. DTMs produced by the U.S. Geological Survey and Defense Mapping
Agency are of this form. Although a grid structure is easy to manipulate, it is lim
ited by its dependence on the sample rate. For example, widely spaced elevation
posts may miss important terrain features, producing an inaccurate model. This is
clearly demonstrated by comparing DTMs of the same area created with different
sample rates as shown in Figure 8 and Figure 9. It is for this reason that recent
studies (such as U.S.A.E.T.L. 1987) call for the generation of data with 10 meter
resolution or better.

Contrarily, narrow spacing between posts greatly increases the data volume,
sometimes unnecessarily. For example, samples taken over a relatively flat area
are translated into many polygonal facets when only a few are necessary. This can
greatly increase the cost of computer image generation. Figure 1 shows how a grid
structure can both contain many more samples than necessary in one area, yet
miss important terrain features in another area.

Triangulated Irregular Networks

TINs, on the other hand, contain only those points which significantly affect the
topology of the terrain. Included are points along contour lines or ridge and valley
breaklines, as well as peaks and pits. These points are linked by edges that define
a network of triangular facets conforming to the terrain. TIN structures are widely
used in commercial geographic information systems because high resolution may
be achieved with relatively little data. For example, flat or smoothly sloped areas
may be represented by only a few points, whereas the fine detail in rocky or irreg
ular areas may contain a great number of points. TIN structures are also con
venient for generating perspective views, as many rendering algorithms work best
with triangles.

Numerous methods have been developed to generate TINs (for example Christian-
sen 1978, Dennehy 1982, DeFloriani 1984, Watson 1984, Preparata 1985,
Christensen 1987, Correc 1987, Dwyer 1987, McKenna 1987). Most of these algo
rithms are based on Delaunay triangulation, which forms connections between
nearest neighbors within a scattered set of isolated elevation posts (Preparata
1985). Extensions to this algorithm typically increase time efficiency, simplify the
steps in the algorithm, or add further structure to the TIN. However, Delaunay
triangulation has one major drawback. It ignores the natural connections between
points along contours and breaklines. These line segments are commonly used in

147

maps to describe critical terrain features, and are frequently as important as the
points themselves. As noted by Christensen (1987) and shown in Figure 1 , lines
produced with Delaunay triangulation can cross these important breaklines, creat
ing triangular plateaus over or under important features. This results in a
misleading and inaccurate DTM.

The cartographic community has recognized this problem and proposed solutions
which utilize connections between points along contour lines. However, these
algorithms suffer because they require extensive human interaction (Christiansen
1978), do not extend well to handle complex terrain (Dennehy 1982), or double
the number of data points as a side effect (Christensen 1987). In addition, none of
these algorithms can triangulate intersecting breaklines such as ridge and valley
lines and contour lines merged with other breaklines.

THE NEW TRIANGULATION

Our problem was to devise a way of building accurate, yet compact DTMs from
common input sources. These sources include contour maps and ridge and valley
lines traced from stereo imagery. This data would be input as a series of con
nected points forming closed polygons, open curves, connected graph structures,
and a few isolated points. Our algorithm had to conform to these lines without
adding data points.

The resulting algorithm, presented here, is an extension of Fournier and
Montuno's 1984 triangulation algorithm developed for simple polygons with non-
intersecting edges. This algorithm was an attractive basis for a solution to the
more general terrain problem because

1. the polygon edges are inherently part of the triangulation, contributing at
least one edge to each triangular facet

2. only the original points defining the polygon are used, resulting in a small
data set

3. the algorithm is shown to run in O(n log n) time with a method that is rela
tively simple to understand and implement.

Although theirs is an excellent academic treatise, the Fournier and Montuno tri
angulation algorithm required a great deal of alteration before it could triangulate
diverse terrain data. We created a valuable tool for terrain modelling applications
by extending the algorithm to handle the following:

1. Any number of lines and points may be input. This makes the algorithm
general enough to triangulate the data from any topological map.

2. Input points may be linked to form closed polygons, open chains of line seg
ments, or even complex graph structures with several edges emanating from
each point. This covers all combinations of contour lines, ridge and valley
lines, and other breaklines which may occur in a topographic representation.
Because maps often contain isolated peak elevations, isolated points may
also be included.

3. Lines may connect points that have either a constant elevation (as do con
tours) or variable elevations (common with breaklines).

The algorithm takes the following steps. First, the data is sorted on point posi
tions. Second, the data set is decomposed into a series of trapezoids. Third, these
trapezoids are split by new edges linking points on the trapezoids. Finally, all of

148

the resulting edges, new and old, are used to define the triangular mesh. The
remainder of this section describes these steps in detail.

Setup

Digitized contour lines and/or breaklines are input as lists of connected 3-D coor
dinates. An edge list is maintained so that a point with multiple references may
be condensed to a single point reference with multiple connections. Naturally, if
two edges intersect, a point must be placed at the intersection. The only restric
tion on the data is that elevations for repeated points must agree.

Two steps must be taken before triangulation. First, the points are sorted on their
Y value, from bottom to top. Points with the same Y value are sorted on their X
value, left to right.

Next, the points must be bounded by a single closed polygon. Although the
bounding polygon can be any shape, we selected a rectangle for convenience. We
determine the bounding rectangle for the data set, add points at the corners of
that rectangle (if necessary), and add edges connecting points along the periphery
of that rectangle. New points are assigned elevations which are the weighted aver
ages of their neighbors' elevations, where neighbors are adjacent points connected
by an edge.

Defining the Trapezoids

Decomposition of the data into trapezoids parallels the definitions and steps out
lined by Fournier and Montuno (1984). As shown in Figure 2 , a trapezoid is
defined as a four-sided figure with its top and bottom edges parallel to the X axis.
These imaginary top and bottom edges each pass through one of the input data
points. The side edges, left and right, come from the collection of connecting lines,
which are defined by two endpoints each. Therefore, the program stores each tra
pezoid as a list of six point indices, even though some of the indices may be
repeated. For example, Figure 2 also shows that some trapezoids may look very
much like triangles. In this case, the top point is also listed as a point on the left
edge and a point on the right edge.

Top

Left
Edge,

y

L. bottom

Right
Edge

"liottom

Common Trapezoid Degenerate Trapezoid

Figure 2. Trapezoids

Trapezoids are developed in the following manner. First, an active list of incom
plete trapezoids is initialized. The trapezoids in the active list each have a bottom
and two side edges, but no top edge. Initially, every active trapezoid has a bottom
edge with the minimal Y value and side edges which are connections to points
with the minimal Y value.

149

Then each data point is examined once, in its sorted order. This point is used to
complete active trapezoids and contribute to new trapezoids. First, the active list
is searched for trapezoids which have side edges that either surround the current
point or belong to that point's edge list. These trapezoids are said to be com
pleted by the current point. Typically, a point with m edges extending downward
will complete m+1 trapezoids, as shown in Figure 3 Thus, an unconnected point
will complete one trapezoid. Once a trapezoid is completed, it is removed from the
active list and placed on a separate trapezoid list, with the current point given as
its top point. The data set is completely decomposed into trapezoids when all of
the vertices have been examined.

point completes point contributes to
4 trapezoids 3 new active trapezoids

Figure 8. How points contribute to trapezoids

Second, new active trapezoids are created and inserted to the list where the old
ones resided. As shown in Figure 3 , a point with n edges extending upward con
tributes to n+1 new active trapezoids. The current point is the bottom point of
each new active trapezoid.

Original Input Trapezoid Decomposition

Figure 4. Contours decomposed into trapezoids

Figure 4 shows how the elevation contours from Figure 1 would be decomposed
into trapezoids.

150

Finding the Remaining Triangle Edges

Once all the trapezoids have been found, they are split into triangles by connect
ing points that lie on opposing sides of the trapezoids. These splitting edges are
added to the edge lists of the newly connected points. Each trapezoid that is com
pletely split into triangles is removed from the trapezoid list. When the trapezoid
list is empty, all necessary edges have been found. These new edges, combined
with the original contour edges, will form the triangular network covering the ter
rain.

Trapezoids are split in two passes. The first pass recursively splits individual tra
pezoids. If two or more points lie on the top or bottom edge of the trapezoid, then
these points are linked by new edges, added to the points' edge lists. Any point
appearing on the top or bottom edge may then serve as the top or bottom point.
If a trapezoid has a top point and bottom point which do not lie on the same side
edge, then these points are also connected with a new edge. This splits the origi
nal trapezoid into two new trapezoids, each of which are examined for further
splits. Once a trapezoid becomes triangular in shape, and no more splits are possi
ble, it is removed from the list. Figure 5 shows how the trapezoids from Figure 4
would be split in the first pass.

Pass 1:
split individual trapezoids

Pass 2:
split trapezoids collected
as unimonotone polygons

Figure 5. Splitting trapezoids

After the first pass, all remaining trapezoids on the list may be collected to form
one or more unimonotone polygons (Fournier 1084). A unimonotone polygon is
characterized by a single major edge and a two or more minor edges. The major
edge is defined by two endpoints which have the maximum and minimum Y
values for the polygon. All points on the minor edges fall within this vertical
range. Therefore, all remaining trapezoids with the same major edge are part of
the same unimonotone polygon.

The second pass splits the unimonotone polygons into triangles. Two approaches
may be taken to decompose each unimonotone polygon into triangles.

151

1. If a point on a minor edge is linked to the major edge, a triangle may be
formed by connecting its minor neighbor to its major neighbor. The new
edge must fall within the unimonotone polygon, and therefore the angle
formed by the two pre-existing edges must be checked.

2. The two minor neighbors of a minor point may be linked by an edge if that
edge falls within the unimonotone polygon.

Figure 5 also shows how the remaining trapezoids would be split in the second
pass.

Collecting Edges to Build Triangles

The edges splitting the trapezoids, along with the original edges, form a triangular
network covering the area within the original bounding polygon. In the final step,
these edges are organized to form a triangle list. This is done by repeating the fol
lowing steps for each vertex.

1. The current point's connecting edges are sorted in counter-clockwise order.

2. Each pair of adjacent edges on the sorted list form a triangle, because the
points at the ends of those edges are linked to one another. Add this triangle
to the list only if the indices of the two end points are greater than the
index of the current point. Otherwise, this triangle is already on the list.

IMPLEMENTATION

To test our algorithm, we traced contour lines from the field map shown in Figure
6 and fed them to our triangulation routine. This small test area covers 304x482
meters, and is represented by 2014 points. Our routine triangulated this data in
4.85 CPU seconds on a VAX/8530, with 0.35 seconds of that time spent on the
initial sorting. The resulting DTM contains 2018 points on 4020 triangles. Figure
7 shows a perspective view of this data.

For comparison, we also generated a grid format DTM from the same contour
map. This data was sampled at a regular post spacing of 2 meters and placed in a
grid structure containing 152x241 points, or 72480 triangles. Figure 8 shows the
resulting grid rendered in perspective. Although this produces an equally accurate
representation of the scene, it also contains 18 times the number of points and tri
angles contained in the TIN. We also sampled the data with 8.25 meters between
posts to produce a grid data set with approximately the same number of points
and triangles as the TIN. Figure 9 shows the lower resolution data set rendered in
perspective. Notice how much detail is lost in the lower resolution.

TABLE 1. Triangular vs. Grid DTMs
DTM

Triangulated
Contours
2m posts
8m posts

No. of Points

2018

36,632
2088

No. of Polygons

4020

72,480
3990

Render Time (min.)

2:46.04

3:52.14
2:36.66

Table 1 summarizes our results. Rendering time is measured as minutes of CPU
time on a VAX/8530. It is important to note that this sample area is small rela
tive to the coverage required by most applications. Thus, the savings incurred by
the triangulation will be greater as the area of interest grows.

152

CONCLUSION

At a time when demands for highly detailed data over large areas is placing a
strain computer systems, we have demonstrated that TINs can represent details
far more compactly than a grid format. Furthermore, we have presented a proven
algorithm that produces a DTM from critical line features in a reasonable amount
of time. This algorithm is superior to previous algorithms because it 1) maintains
the integrity of the critical lines, 2) triangulates any series of input lines, including
intersecting lines, without requiring any human intervention, and 3) adds no more
than 4 points to the original data set.

ACKNOWLEDGEMENTS

I would like to thank J. Mendelson, R. Kelly, H. Tesser, and G. Gardner, without
whom this research would not have been possible.

REFERENCES

Christensen, A.H.J., 1987. Fitting a triangulation to contour lines, Proceedings of
AUTO-CARTO 8, 57-67.

Christiansen, H.N. and Sederberg, T.W., 1978. Conversion of complex contour
line definition into polygonal element mosaics, Proceedings of SIGGRAPH '78,
187-192.

Correc, Y. and Chapuis, E., 1987. Fast computation of Delaunay triangulations,
Advances in Engineering Software, 9(2), 77-83.

DeFloriani, L., Falcidieno, B., Nagy, G., and Pienovi, C., 1984. A hierarchical
structure for surface approximation, Computers and Graphics, 8(2), 183 - 193.

Dennehy, T.G., and Ganapathy, S., 1982. A new general triangulation method for
planar contours, Proceedings of SIGGRAPH '88, 69-74.

Dwyer, R.A., 1987. Faster divide-and-conquer algorithm for constructing
Delaunay triangulations, Algorithmic^ 2(2), 137-151.

Fournier, A., and Montuno, D., 1984. Triangulating simple polygons and
equivalent problems, ACM Transactions on Graphics, 3(2), 153 - 174.

McKenna, D.G., 1987. The inward spiral method: an improved TIN generation
technique and data structure for land planning applications, Proceedings of
AUTO-CARTO 8, 670-679.

Preparata, F.P. and Shamos, M.I., 1985. Computational Geometry, Springer-
Verlag, New York.

U.S. Army Engineer Topographic Laboratories, 1987. Digital terrain data require
ments, Army Environmental Sciences, U.S. Army Corps of Engineers, 5(3), 10-
11.

Watson, D.F. and Philip, G.M., 1984. Survey: systematic triangulations, Com
puter Vision, Graphics, and Image Processing, 26, 217-223.

153

STANDARD SCENE No.l

Figure 6. Field map used as input for triangulation

Figure 7. Triangulated field map

154

Figure 8. Grid data, sampled every 2 meters

Figure 9. Grid data, sampled every 8.25 meters

155

