
A Full Function GIS Editor

William H. Moreland

Environmental Systems Research Institute
380 New York Street

Redlands, California 92373

ABSTRACT

With the introduction of engineering workstations, GIS
graphic editors now have the means to the provide the user
a single interface combining the capabilities of high speed
graphics along with a fully functional two-way link to a
relational database. A GIS editor must perform more than
graphic edits, it must also maintain the integrity of a GIS
database while editing both coordinates and attributes. The
GIS editor needs to consider both the coordinates and
attributes of each feature as a single entity; and to operate
upon each entity with fast graphics operations as well as
allowing full attribute editing capability. This paper will
outline the requirements and specification of such an editor.

Introduction

The most common type of editors edit a single data type or file; but
since a GIS database is not a single data type, but in fact a collection
different data types which together form a database of both spatial and
non-spatial data (figure 1). A person wishing to edit a GIS database does
not want to edit any given part of the database as a single data type, but
to alter the database as a whole. Therefore, a GIS editor must consider
the GIS database as a whole and allow the user to alter it similarly. Most
editors to date have performed well on either of the two main parts of a
GIS database; the coordinates (spatial) or the attributes (non-spatial), but
not both.

641

A Full Function GIS Editor

User

Geographic Information System

Spatial Operators Dat a Ba$e

Non-Spatial
Operators

Non-Spatial
Data Base

Figure 1.

There is a third component of a GIS that most editors seem to
conveniently forget: topology. Topology is the glue that holds the GIS
database together. The end result of most GIS editors is the edited
versions of the two main components, that still need to be glued together.
What is needed is an editor that allows fast efficient update of both of the
spatial and non-spatial components while maintaining the topology. A
fully functional GIS editor must produce a fully functional GIS database.
What this paper will describe is how ARCEDIT has evolved over the
years in response to the growing requirements for GIS editor, and our
future plans for it.

642

A Full Function GIS Editor

A GIS editor needs to allow the user to alter and view any aspect of
the low level components of the database. For ARC/INFO coverages
these,components are: Arcs, Nodes, Points, Annotation, and Tics (figure
2). The attributes (if any) of each of these components are linked with
their counterparts to form a single entity capable of being edited (figure
3). This is ARCEDIT's basic purpose, since the coordinates and the
attributes of each component are treated as a whole the editor not the
user worries about the link between them and how that changes when
either is altered. All the user cares about is that he has either moved the
location or changed the value of an attribute.

Tic
flrc
Node
Polygon
Label Point
flnnotation

Figure 2 (coverage).

Location attributes

XX XXX XXX
XX XXX XXX
XX XXX XXX

Topological Model
"flRC"

Relational Model
"INFO"

Figure 3.

643

A Full Function CIS Editor

As would be expected in a graphic editor, ARCEDIT allows any
feature to be moved, copied,rotated, deleted, added, etc; as well as
allowing any of the attributes to be calculated, assigned, etc. ARCEDIT
satisfies the requirements of a GIS editor, by providing the user with
environments to perform as much of the functions of the CLEAN and
BUILD process as possible while maintaining an good response time.

CLEAN and BUILD are the topology builders within ARC/INFO.
CLEAN takes as input the arcs and/or points (labels) finds all
intersections between segments, and processes them into polygon or
line coverages. BUILD and CLEAN perform basically the same
operation, but BUILD skips the intersection phase in order to save time.

ARCEDIT has a number of editing environments that control how
coordinates are handled while editing. These five environments:
nodesnap, arcsnap, snapping, intersectarcs, and attribute only. These
environments are responsible for ensuring that the nodes (end points of
arcs) snap to their neighbors if within tolerance, resolving intersections
within the arcs, snapping any component with any other from any other
database, resolving both undershoots (arcs that are suppose to intersect
but fall short) and overshoots (arcs that are suppose to meet exactly with
another), and allowing non-spatial edits to not destroy the topology.

The snapping environments work in three ways. First all nodes are
always snapped to each other when ever an arc is updated. This is to
ensure that all arcs that are suppose to meet at a single node do in fact
share the same coordinates for the common node. The second
environment allows any feature being altered to be snapped to any other
feature either within the same or any other coverage. This allow different
feature types that are suppose to overlap and meet, to in fact do so and to
have the same coordinates. The final snapping environment is where
under and over shoots are resolved upon the adding of new arcs. This is
used to ensure that those arcs that are suppose to end exactly at another
do in fact do so and that where it does meet the other arc that, that arc is
split and a node is generated. This is the only environment that is active
only upon the adding of new arcs, and not during the entire edit session.

The intersection environment performs much of the preprocessing
that goes on within CLEAN by ensuring that all the possible intersections
between arcs have already been resolved and therefore it is not
necessary to use CLEAN, but only reestablish topology by only using
BUILD. Each arc as it is edited is checked against the region of the
database that it overlaps for intersection with any existing arc, then the
arc is checked against itself. Each new segment of the edited arc will
each possess its own copy of the initial attributes.

The last environment is not really an environment at all, but in reality a
internal flag that keeps tract of any spatial edits. If at the end of the edit
session no spatial edits were performed, then only the non-spatial side of
the database is altered and the topology of the spatial side remains
intact. This allows Users to use the spatial capabilities of a GIS editor to
select the components for update and to edit the attributes directly. This
is where, once the database is built, most of the edits will take place. The
user views the database as a whole and should be allowed to edit it as
one; and not be forced to use one editor for spatial updates and another
for non-spatial.

644

A Full Function CIS Editor

All of these environments are checked only when coordinates of any
feature are updated and are order dependent. In the case of arcs, after
each arc is edited, but before it is added back into the coverage, it is
acted upon in the following order:

1) SNAPPING Check arc for snapping to any other feature of this or
another coverage. This snapping environment is valid for all features,
where as the rest are only valid for arcs.

SNAPPING

2) Check the nodes of the arc for snapping onto each other. In this
case the last (to) is snapped onto the first (from). This ensures that
islands (polygons represented by a single arc) are closed. This is not
an environment, but does use the snap tolerance set by NODESNAP.

3) NODESNAP Check the nodes of the arc for snapping onto all of
the existing nodes within the region of the coverage defined by the
confining box of the altered arc. This environment is for arcs only.

NODESNAP

645

A Full Function GIS Editor

4) ARCSNAP Check for under or over shoots. This environment is for
arcs only.

ARCSNAP

5) INTERSECTARCS Check for intersections with either existing arcs
or itself. This environment is for arcs only.

INTERSECTARCS

6) Recalculate the length of the arc and add to the coverage. This is not
an environment, but is performed for every arc.

646

A Full Function CIS Editor

The non-spatial side of the database, as discussed earlier, should be
fully accessible and changeable from a GIS editor. The user needs to be
able to view and change any attribute of any feature, and to be able to
establish selection sets by either attribute equation or by spatial
selection. In other words, the user should be able to spatially alter any
set of features derived by a attribute equation; and to be able to alter the
attributes of any set of features derived by a spatial select. Since
ARCEDIT considers the GIS database as a single entity in principle as
well as in practice, it allows the user to select, view, and update any
aspect of the database.

As with all editors, there needs to be a way of recovering from making
mistakes. All updates to a database must not be irreversible, until such
time as users save their updates. The philosophy of ARCEDIT is to only
access the database in a Read-Only mode placing all updates into local
scratch files. It is this philosophy that allows ARCEDIT to be able at any
time, OOPS any number of updates all the way back to the beginning of
the edit session, and to support recovery of updates in the case of the
computer system going down.

The last thing all GIS editors needs to do is to maintain the topology.
The topology is a part of the GIS database and therefore, should be
accessible and maintainable by the editor. The above described editing
environments go a long way toward accomplishing many of the low level
steps required for maintaining topology interactively, but the final step of
rebuilding the arc segments into polygons is not taken. We plan to tkae
this final step in the next revision of ARCEDIT (ARC/INFO version 6.0). It
is the introduction of engineering workstations, that make it possible to
deliver topology on the fly while maintaining good interactive response
time.

Conclusion

Basically a full function GIS should be able to work with the GIS
database in its entirety and to present at all times an intact and fully
functional GIS database to the user. This implies that upon completing
the edit session the end result, if given a fully functional GIS database at
the onset, is a fully functional GIS database. With the introduction of
engineering workstations, and the steps already incorperated within
ARCEDIT, there is enough compute power to ensure good response time
while maintaining topology on the fly.

647

