
A Fully Integrated Geographic Information System
Dr. John R. Herring

INTERGRAPH Corporation
One Madison Industrial Park

Huntsville, Alabama 358O7-2180

ABSTRACT

The major problem in GIS implementation is the diversity o-f
data types and data base management systems that can carry
geographically related data. A -fully integrated GIS must
be able to handle data in various -formats (vector,
topology, attribute, raster, grids, TINs, etc.), providing
a environment where they can co-exist, and interact. It
must also provide standard inter-faces to external data
bases; -foreign in structure, schema, DBMS, and machine
environment. This paper describes the some requirements
•for and approaches to a -fully integrated GIS.

INTRODUCTION

The last thing the Geographic In-formation System (GIS)
community needs is yet another definition for GIS. Some
current definitions are "that which exists" (a current
useful product in geographic analysis) or "that which I do"
(based on a particular product or application). This paper
tries to remove this bias and establish a definition and
basic requirements for "that which should be."

To begin, let us distinguish between data management and
applications. The need in the BIS user community is for
applications, which perform tasks for data collection,
extraction, analysis, and product generation. But, neither
singly nor collectively, do applications support the data
management tasks most effectively done by a DBMS, usually a
Relational Data Base (RDB), in the business community. If
we make the same distinction, defining a GIS as "a DBMS for
data having geographic significance", or "a DBMS upon which
geographic applications can be built"; then a GIS must:

o provide a common interface to organize, load,
extract, and report on all types of geographic data.

o provide a generic query environment to perform
analysis common to most applications.

o maintain ("serve, protect, and defend") the integrity
and the validity of geographic data

The rest of this paper draws conclusions about what such a
GIS must be, and presents requirements and potential
solutions to fundamental problems. Since no restatement
can truly begin unencumbered by the past, several technical
controversies on GIS implementation are addressed directly.

WHO USES A GIS

A GIS manages geographically significant data, and supplies
combined spatial and attribute analysis tools. Given this,
who are the users of a GIS? We can classify the handling
of geographic data into four categories (not necessarily
mutually exclusive): collect, merge, validate, analyze,
and produce products.

828

To collect data is to extract it -from non-data-base
sources, veri-fy its consistency with that source and
convert it to the appropriate data base format. The
immensity and the importance of the verification task
requires a number of automated and semi—automated tools to
discover potential errors before the source is released.
This includes such diverse problems as attribute range,
consistency and validity checking; and geometric anomaly
prevention, detection and correction. These tools require
a GIS. In fact, the verity of the collected data is so
pivotal to the validity of the results of any GIS
application, and analysis is so important to verification,
that it should be emphasized that no on needs GIS
functionality more than the person collecting data.

To merge data is to combine multiple sources of
collected data into a single environment appropriate for
further manipulation. The merge process must be able to
recognize when two feature representations are in fact
different versions of the same feature, separated by
collection method, statistically reasonable error, or time;
and ^p be able to combine these multiple representations in
a statistically valid compromise. A GIS is needed.

To validate data is to assure its internal consistency.
To analyze data is to derive implicit information from
explicit data. Combined spatial—attribute validation and
analysis are the classic GIS applications, often confused
with the GIS itself. They certainly require a GIS.

To produce products from data is to convert the data
base information into a form directly consumable by a
client (either a human or other digital process). As such,
it can involve a massive reshaping of the data. For
example, the production of paper or digital maps must
contend with generalization, agglomeration, aggregation,
and conflict detection and resolution. Even in a semi-
automated environment, this very complex spatial analysis
requires a GIS.

So the answer is "anyone who handles geographic data."

DATA TYPE COEXISTENCE

The first major separation between GIS's and other DBMS's,
is the data itself. No non—spatial, and few non—geographic
data bases have such a wide variety of data types. These
types include, but are not limited to the following:

o feature attribute information;
o structured (topological) vector graphics;
o unstructured vector graphics;
o raster representations maps, aerial and satellite

photography (grey—tone, color and multi—spectral);
o TINS (triangulated irregular networks), grids,

contours and other elevation models;
o non-elevation TINS, grids, and raster information for

the representation of analytical surfaces (e.g. soil
permeability, cost functions, demographics);

o 3 and higher dimensional equivalents for TINS
(simplicial complexes) for subsurface geology;

o projection, transformation and other coordinate
information (including projection parameters, datum;
primary and alternate units of measures; digitizer
setups (table to screen); co-registration parameters

829

(e.g. best -fit -functions between raster-vector,
raster—raster, or vector—vector data);

o relational information linking all of the other data
types together;

o schema information, describing the application
specific parameters for the other types of data
(attribute names, types, and ranges; feature types,
representation rules and display parameters; etc.).

The first coexistence problem is to co—register any of the
various data types to common geographic coordinate frames
of reference; but this is only the beginning. The
disparate data types must be simultaneously manipulable;
all data from a single geographic area, regardless of
format or content, must be read and write accessible within
a single 6IS process; subprocesses such a commands must
manipulate as many of the data types as logically feasible.

Structured Versus Non-structured

There is a continuing controversy in the GIS community
between two seemingly disparate philosophies; between "non-
ambiguous structured data model" and "a flexible and
simplified data model." To explain this, let us
investigate some of the major points of contention.

Real-time topology versus on demand structurings No one
disagrees that topologically structuring of vector data is
a boon to spatial analysis (Herring—86), but there is a
controversy as to the manner in which the system maintains
such a structure. The two logical alternatives are real-
time maintenance (topology is always valid) and on—demand
updating (topology is frozen at user chosen points and bulk
updated or recalculated as necessary for analysis). These
two alternatives are solutions to different problems. In
older and less powerful workstations or systems, the real-
time load for topological maintenance quickly uses
unacceptable amounts of system resources. In the newer
workstations or system (with 0.5 MIPS or better per user),
the excess capacity of the system can be used to take
advantage of a real-time maintenance system. These
advantages include at least the following:

o ad-hoc combined spatial-attribute query and analysis
o real-time geometric anomaly detection and prevention
o better system utilization (% use of machine cycles)
o intelligent user—feedback based on automatic analysis

The most obvious recipients of these benefits are the data
collection tasks (with the real time validation and
verification) and what-if-analysis tasks (faster turn
around on spatial queries or analysis based upon recent and
tentative geometric changes). In summary, real-time
systems provide a more flexible environment, and are
preferable assuming sufficient system resources to maintain
interactive response times. In non—interact!ve processes,
maintenance is always less expensive than reconstruction.

Relational versus Object-Oriented Data Models This is a
true non sequitur for a very simple reason: almost all
GIS's (even those using a RDB) are already object oriented
(see Ullman-88). An "object-oriented system" is one which
supports an abstract concept "object" ("entity", "feature")
having existence independent of any attributes that entity
may or may not have. The opposite of this is a "value-

830

oriented system" which models only attributes. For
example, in a valued-oriented system such as a "classical"
RDB, the entity (and any tuple representing it) owns it
existence to a non—null key attribute combination, and any
pair o-f entities (sets o-f tuples) having equal (key)
attributes are equal (duplicates are eliminated). Such
pure value—oriented systems can create confusion, such as
two employees with the same name getting each others
paychecks. To prevent this, most applications using RDB's
assign "employee numbers." This same natural approach
appears in linked graphics-attribute systems, where
graphics are given identifiers ("graphic link", or "feature
id"). This moves the GIS from the "value—oriented" world
to the "object-oriented" world, since the system now gives
meaning and existence to the graphic or feature "objects"
independent of their spatial and non-spatial attributes.
This does not mean that Object Oriented Data Bases (OODB's)
are being used, since other requirements are levied against
such system (at least encapsulation and abstraction), but
it does imply that, taking use into consideration, many of
the object-oriented concepts are natural extensions of the
relational model. In fact, some classical problems in RDB
design, referential integrity and normal forms, lead into
object concepts. For example as early as 1980, three rules
for converting an entity—relation model to a relational one
were laid down by Wong and Katz (Chap. 21, Stonebreaker—86)
("()" added to identify equivalent OODB concept):

1) each entity set (object) has an explicit identifier
(object id) which represents it globally in the
relational model

2) the identifiers (object id's) of a primitive object
(class) together with all the primary functions
(attributes) of the primitive object are grouped in
the same relation in the relational schema

3) there is one and only one primitive object (class)
per relation of the relational schema

They go on to show that these "mapping rules" lead to
fourth normal form (4NF) RDB implementations. Looking back
on this from the OODB point of view, we see that Wong and
Katz have essentially proven that a straight forward,
formal implementation of an object model in a RDB gives a
4NF relational data base schema. Since this early
parallelism, further work has brought the two data models
closer together. For example, Rumbaugh-87 proposes
including relations in formal OODB models; Blaha—88 suggest
using object-oriented models to design RDB schemas,
formalizing what now occurs naturally (see above); and
Ullman—88 proposes an extended entity—relation model as a
supei—model for both RDB's and OODB's.

A complete BIS system, regardless of its implementation
details, must be able to communicate with all data bases
capable of storing geographic data, including both RDB's
and OODB's. Since DBMS can only rarely exchange raw data,
this implies compliance with standard exchange formats and
protocols (possibly based on object-oriented extensions of
SQL standards, see Herring-88).

Single-content Multiple Layers versus Mult i pie-content
Single Layer: (whether- to merge all the data into a single
integrated geometric structure or to maintain separate
layers, merging only for analysis). These two options are

831

actually the opposite ends of a broad spectrum o-F passible
data-base schemes involving various levels of integration.
Each application, and each user has di-f-fer-ing needs based
upon the particular work-flow, analysis requirements,
processing power, inter-department inter-faces, etc. Even
then, the requirements may vary between subsystems within
the users' DP community. The considerations in deciding
which data types (themes) to aggregate into single
topologies (layers) are quite varied. They include at
least the -following:

o the amount o-f shared geometry between the themes,
o the degree in which they are combined in the usual

course of GIS processing,
o the common source and maintenance responsibility.
o data complexity and storage requirements within a

theme, and
o the geometric or non—geometric quality of a theme.

Sliver and gap detection, elimination and prevention is
very costly, so that themes which tend to share a great
deal of their geometry should probably be integrated at the
master data base level to prevent high initial access time
for applications requiring integrated data. The same is
true for data that is often used in combination during GIS
processing, again to save the repeated cost of the merge
process. Common source and maintenance responsibility
allows for easier integration.

So each user must be able to select from the broad
spectrum of data structures, most often deciding on a
master data base with multiple layers each with multiple
content.

Implicit Data versus Explicit Data8 In a RDB, some
contend that relationships are only implicit since they are
"derived" through the join process. While technically
correct, this view ignores the fundamental problem of
referential integrity. Suppose for example, that in a
Wong-Katz RDB implementation, there are tables for road
"segments" and other tables for "highways," and that these
entities are linked via a specific ownership relation.
Thus, one of the segment tables would have an attribute for
highway-number, acting as a foreign key into the highways
tables' primary key. If the user wishes to report on "all
road segments that belong to particular highways," then the
needed join on highway—number is valid since a common value
means ownership (is valid semantics). If the data base
exhibits referential integrity, then each value of highway-
number in a segment table corresponds to a valid and
correct highway-number in a highway table. On the other
hand, if the join where done on other integer valued fields
(such as segment.width-in-meters = highway.age-in-years)
the results might be nonsensical. Thus, even though the
tables appear to be without structure, there is an implied
structure based upon the semantic meanings of attributes.

The distinction then between structured and unstructured
data is whether or not the DBMS system is aware of the
structure that naturally exists within the data. In a GIS,
this includes common attributes and common geometry. In a
RDB environment, this means that the system is aware of any
foreign key attribute value and support procedures to
maintain referential integrity; in a OODB, this means that
any foreign key is implemented through object relations.

832

Valid non-causal joins (those based upon attribute
relations not involved in -foreign-key to primary-key
linkage), represent a extra-system (user) interpretation o-f
the data. Thus, the user is placing an interpretation on
the data base not considered during its data structure
design phase. Whether this query derives valid information
depends upon the correlation between the semantic
interpretation of the data analyst and the data extractor.

Thus, a GIS, during normal operations, should maintain
the correct interpretation of the data (referential
integrity). But, in non-causal joins such as used in
statistical analysis, the GIS must allow the user to
override the default interpretations.

Integrated versus Linked Attribute-Braphics

The most obvious problem in a system supporting such a wide
variety of data types is to minimize the number of lower-
level data management systems involved in the GIS. The GIS
must hold and manipulate several types of stored
(persistent) data as listed above, in addition to non-
persistent, application data (point buffers, the temporary
results of query, display information, window information,
temporary command information, etc.).

The most controversial element is the linkage between
vector (or topological) data and feature attribute data.
The classical approach is to split the two data types at
the graphics-to-attr-ibute juncture. This creates a gap
that must be hurdled every time a combined spatial-
attribute edit or query is executed. The extreme
alternative is to place all attribute information in the
same DBMS as the graphic information. This is not
generally feasible in the RDB world due to its value-
oriented programming implementation. Graphic operations
(such as simple display) require the access of large
amounts of diverse data (an average graphic window might
contain 500 kilobytes of information distributed among
2,5OO data items of differing types). This would require
an RDB to access multiple tables, and return large amounts
of structured data. Currently, commercial RDB's are simply
incapable, by several orders of magnitude even on the best
systems, of reasonable response times in such situations.
Further complicating the process, RDB's usually require INF
(first normal form, all column data types are simple),
while geometric data in inherently not INF (e.g. coordinate
lists). OODB's by their very definition, and some of the
more theoretical RDB's, support abstract data types and
alternate access methods such as triggers (Stonebreaker—86,
Andrews—87) which render such problems solvable.

On the other hand, a single data management system for
attributes and geometry simplifies the system, making real-
time topological maintenance (see above) and integrated
spatial-attribute ad-hoc query (see below) possible. This
implies, as in the real—time topology discussion, the
implementation of the geometry—attribute linkage is a
function of the performance level and sophistication of the
system.

When large amounts of static, persistent data are linked
with the geographic data (such as well logs in petroleum
applications), data size can become a problem. Therefore,

833

the application or user must decide which data to integrate
and which to segregate (to other nodes in a distributed
system, see below). The criteria that a-f-fect this decision
are basically the same as the layering criteria below (i.e.
some o-f the layers are non—geometric) . Some data such as
raster, and dense grids are so storage space intensive,
they probably should be stored in the most efficient manner
passible such as indexed run-length-encoded or quadtree
structured -files. Even so, -foreign linkages must exist in
main DBMS to hold integration information such as co-
registration parameters (see below).

In summary, some degree of tight integration between
attributes and geometry is required to support full GIS
capabilities; but, the degree of integration between layers
of the data should be user and application controllable
system configuration decisions.

Communi cat i on

Once coexistence has been achieved, the next most important
criteria is communication between the data types. For
example, the passing of geometric descriptions should be
possible between any two domains. For example, the raster-
subsystems must be able to perform classification
algorithms based upon vector area criteria; and raster-
line-following and polygon classification must be usable in
vector digitization and spatial query. This requires that
each of the data subsystems support common protocols for
the transfer of at least geometric information. Across
diverse systems this implies universally acceptable
exchange standards. Within a single multi-content system,
internally defined protocols are more efficient.

SPATIAL QUERY

It is in spatial query that a BIS is most distinct from
standard DBMS implementations. For example, in a RDB there
is no interpretation of the data in spatial terms, since
such interpretations depend upon the particular abstract
representation of space chosen by the application. Thus no
reasonable set of spatial operators can exist in the pure
form of the RDB model. On the other hand, a GIS data base
system sole purpose is to incorporate spatial operations
into the other more conventional DBMS functions.

This leads to a nearly insolvable problem. Spatial
extent is different from other data types: non-INF, non-
declarative geometric algorithms even for simple comparison
(e.g. point-in-polygon), etc. In fact, many spatial data
bases separate the spatial and non-spatial data, into two
systems (see above). This usually means that an integrated
spatial query language is impossible, and such systems must
rely on a tool-box approach to spatial analysis,
implementing spatial operators as separate procedural code
which the user alternates with the non-spatial query
language to do analysis. This is the ultimate (worst) in
procedural approaches, forcing the user to specify each
transition from the spatial arena to the non-spatial arena
("procedural" queries specify how data is manipulated,
"non—procedural" or "declarative" query specify what
results are required, leaving the procedural decisions to

834

the DBMS). Spatial operators are thus object—oriented and
essentially procedural, and out o-f the usual domain of a
declarative query language.

This leads to an interesting paradox. GIS's built on
RDB's should expect to gain the advantage o-f the non
procedural , declarative query language, but do not due to
the nature o-f the spatial data; leading to a procedural
spatial query and analysis environment. GIS's built on
OODB's, which are naturally procedural (see Ullman—88),
supply as applications those procedures needed to do
spatial query and analysis, thus allowing the GIS users and
applications to reside in a declarative, non-procedural
environment (see Herring-88).

FOREIGN DATA BASE LINKAGES

The data size in GIS's, and the need to access large
volumes o-f non-spatial data, require that the question o-f
distributed, non-homogeneous data bases be addressed.
Since much has been written on the general problem o-f
distributed data bases (e.g. Ullman-88), we will
concentrate on the mechanism to link the data within the
data bases together.

Geographic Link«q»«i The most common way o-f linking GIS
data is common geographic location. For disparate data
contents (different layers), this is sufficient since most
co—location is not causal and subject to some statistical
interpretation anyway (this data-layer independence is a
measure of the success of the layering, see above). For
common data content (dependent layers or adjacent data
collection cells), it is not sufficient. Absolute error is
much larger than the possible relative error, and usually
larger than the micro-structure of the geometry (such as
real road misalignment at intersections).

Explicit Linkuqami In a RDB, explicit linkages, as
internal foreign keys, are implemented by a set of common
attribute values. In a GIS implemented upon the RDB, these
linkages can be logically either value—oriented or object-
oriented, depending upon whether the system allows direct
application or user access to primary and foreign keys. In
a OODB, such linkages are maintained by the DBMS itself
through linkages based upon internal object id's. Value-
oriented linkages are still possible through common
attribute values.. As within a single DBMS, concerns of
referential integrity suggest that the GIS maintain object-
oriented linkages.

THE DATA SERVER

The environment of the GIS with its multiple data
formats, partitioned data, multiple foreign data linkages,
places heavy requirements on the management of data at the
macroscopic level. This management system, here called a
data server, must fulfill at least the following functions:

o maintain data on the content, accuracy, format,
geographic extent, and storage location of all data
sets, including versioning;

o maintain source utilization and production histories;
o translate standard exchange formats to and from

internal formats;

835

o control access to data;
o manage schema and view in-formation

Much of these are standard DBMS concerns, so we shall limit
ourselves to items which take on a special meaning due to
the geographic nature of the data.

The Geographic Index» The geographic index necessary
for a distributed GIS is a GIS itself, since the partitions
are associated to their spatial extent. Spatial query and
analysis tools used directly on the data are needed in the
index to support production management and distributed
analysis (analysis covering some number of partitions,
executable from the index, which distributes processing and
data to the appropriate partitions, possibly distributed).

Schema Management; In any non—homogeneous distributed
data base, the schemas of partitions may vary based on
layer, data format and type, etc. Further, data collection
and various analysis tasks may require different schemas
(simple for collection, complex for analysis), which in
turn differ from master data base schemas. The data server
must provide a set of schema management tools such as:

o a generic schema definition interface independent of
underlying DBMS's (facilitating inter-DBMS exchange);

o the association of partitions to appropriate schemas;
o update functions for maintaining consistency between

the schema and all partitions of a single layer;
o a schema merge capability to allow multiple layers to

be combined into single data sets for analysis;
o translation functions between different schemas and

user views to allow inter—application sharing of data
This schema management requirement is independent of
whether the GIS is based upon a RDB or an OODB. Currently,
most non-geographic systems avoid this problem by insisting
upon "all data in a single data base," an unacceptable
approach for GIS's due to data volume and diversity.

Access Control Locking and Concurrency: Access control
requirements in a GIS differ widely from those in
conventional DBMS's. First, standard record, or table
locking is nearly useless, since data is usually accessed
based upon common location, not data type. Some form of
"area locking" is more appropriate. This is especially
true for topologically structured layers, where a few data
types (face (polygon), edge (arc) and node (point)) are
evenly distributed so that a single table lock could bring
all but one user to a halt. This is even a greater problem
in a RDB which locks tables after a threshold number of
tuples have been locked. There are two basic solutions:
partitions locking or object—oriented locking. In the
first, a partition is locked completely while a user
modifies it, resulting in a long transaction (hours or
days). In the second, side effect locks can be controlled
at the object class level. In a topological data base
(Herring—87), standard locks could be used on feature data,
and proximity locks on topology (not allowing two users to
modify the same or adjacent faces simultaneously).

SUMMARY

The GIS implementations problems are much more complex than
found in any non-spatial DBMS. Thus, not only should GIS
research investigate the forefront of data base technology,

836

it should also be driving RDB and OODB research to
investigate specific geographically-related problems.
Further, we must recognize the inevitability of diverse GIS
data and GIS implementations and concentrate on a rational
set o-f exchange standards capable o-f supporting diverse,
real-time, distributed, geographic processing.

ACKNOWLEDGEMENT

The issues and solutions presented in this paper represent
six years o-f continuous interaction, within Intergraph and
the GIS community. I wish to thank everyone who has
participated in any o-f these discussions, especially those
directly involved with TIGRIS requirements analysis,
design, and implementation.

REFERENCES

Andrews, Timothy, and Craig Harris; "Combining Language and
Database Advances in an Object-Oriented Development
Environment"; OOP5LA ' 87 Proceedings; ACM; October 4-7,
1987; pp 430-440.

Blaha, Michael R., William J. Premerlani, and James E.
Rumbaugh; " Relational Database Design Using an Object
Oriented Methodology"; Communications o-f the ACM;
vol 31:no 4; ACM; April 1988; pp 414-427.

Herring, John R., "TIGRIS: Topologically Integrated
Geographic In-formation System"; Proceedings of
AutoCartoB, March 1987, Baltimore, Maryland, pp. 282-
291.

Herring, John R., Robert C. Larsen, and Jagadisan
Shivakumar; "Extensions of the SQL Query Language to
Support Spatial Analysis in a Topological Data Base";
GIS/LIS'88 Proceedings; ACSM, ASP/RS, AAG, URISA;
November 3O - December 2, 1988; pp 741- 75O.

Rumbaugh, James; "Relations as Semantic Constructs in an
Object-Oriented Language", OOPSLA'87 Proceedings; ACM;
October 4-7, 1987; pp 466-481.

Stonebreaker, M. 1986, ed. The INGRES Papers; Anatomy of a
Relational Database System, 1986, Addison-Wesley,
Reading, Massachusetts.

Ullman, Jeffery D.; Principles of Database and Knowledge-
Base Systems, Vol 1_; Computer Science Press; Rockville,
Maryland; 1988.

837

