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ABSTRACT

The major problem in GIS implementation is the diversity o-f 
data types and data base management systems that can carry 
geographically related data. A -fully integrated GIS must 
be able to handle data in various -formats (vector, 
topology, attribute, raster, grids, TINs, etc.), providing 
a environment where they can co-exist, and interact. It 
must also provide standard inter-faces to external data 
bases; -foreign in structure, schema, DBMS, and machine 
environment. This paper describes the some requirements 
•for and approaches to a -fully integrated GIS.

INTRODUCTION

The last thing the Geographic In-formation System (GIS) 
community needs is yet another definition for GIS. Some 
current definitions are "that which exists" (a current 
useful product in geographic analysis) or "that which I do" 
(based on a particular product or application). This paper 
tries to remove this bias and establish a definition and 
basic requirements for "that which should be."

To begin, let us distinguish between data management and 
applications. The need in the BIS user community is for 
applications, which perform tasks for data collection, 
extraction, analysis, and product generation. But, neither 
singly nor collectively, do applications support the data 
management tasks most effectively done by a DBMS, usually a 
Relational Data Base (RDB), in the business community. If 
we make the same distinction, defining a GIS as "a DBMS for 
data having geographic significance", or "a DBMS upon which 
geographic applications can be built"; then a GIS must:

o provide a common interface to organize, load, 
extract, and report on all types of geographic data.

o provide a generic query environment to perform 
analysis common to most applications.

o maintain ("serve, protect, and defend") the integrity
and the validity of geographic data

The rest of this paper draws conclusions about what such a 
GIS must be, and presents requirements and potential 
solutions to fundamental problems. Since no restatement 
can truly begin unencumbered by the past, several technical 
controversies on GIS implementation are addressed directly.

WHO USES A GIS

A GIS manages geographically significant data, and supplies 
combined spatial and attribute analysis tools. Given this, 
who are the users of a GIS? We can classify the handling 
of geographic data into four categories (not necessarily 
mutually exclusive): collect, merge, validate, analyze, 
and produce products.
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To collect data is to extract it -from non-data-base 
sources, veri-fy its consistency with that source and 
convert it to the appropriate data base format. The 
immensity and the importance of the verification task 
requires a number of automated and semi—automated tools to 
discover potential errors before the source is released. 
This includes such diverse problems as attribute range, 
consistency and validity checking; and geometric anomaly 
prevention, detection and correction. These tools require 
a GIS. In fact, the verity of the collected data is so 
pivotal to the validity of the results of any GIS 
application, and analysis is so important to verification, 
that it should be emphasized that no on needs GIS 
functionality more than the person collecting data.

To merge data is to combine multiple sources of 
collected data into a single environment appropriate for 
further manipulation. The merge process must be able to 
recognize when two feature representations are in fact 
different versions of the same feature, separated by 
collection method, statistically reasonable error, or time; 
and ^p be able to combine these multiple representations in 
a statistically valid compromise. A GIS is needed.

To validate data is to assure its internal consistency. 
To analyze data is to derive implicit information from 
explicit data. Combined spatial—attribute validation and 
analysis are the classic GIS applications, often confused 
with the GIS itself. They certainly require a GIS.

To produce products from data is to convert the data 
base information into a form directly consumable by a 
client (either a human or other digital process). As such, 
it can involve a massive reshaping of the data. For 
example, the production of paper or digital maps must 
contend with generalization, agglomeration, aggregation, 
and conflict detection and resolution. Even in a semi- 
automated environment, this very complex spatial analysis 
requires a GIS.

So the answer is "anyone who handles geographic data."

DATA TYPE COEXISTENCE

The first major separation between GIS's and other DBMS's, 
is the data itself. No non—spatial, and few non—geographic 
data bases have such a wide variety of data types. These 
types include, but are not limited to the following: 

o feature attribute information; 
o structured (topological) vector graphics; 
o unstructured vector graphics; 
o raster representations maps, aerial and satellite

photography (grey—tone, color and multi—spectral); 
o TINS (triangulated irregular networks), grids,

contours and other elevation models; 
o non-elevation TINS, grids, and raster information for

the representation of analytical surfaces (e.g. soil
permeability, cost functions, demographics); 

o 3 and higher dimensional equivalents for TINS
(simplicial complexes) for subsurface geology; 

o projection, transformation and other coordinate
information (including projection parameters, datum;
primary and alternate units of measures; digitizer
setups (table to screen); co-registration parameters
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(e.g. best -fit -functions between raster-vector, 
raster—raster, or vector—vector data); 

o relational information linking all of the other data
types together;

o schema information, describing the application
specific parameters for the other types of data
(attribute names, types, and ranges; feature types,
representation rules and display parameters; etc.).

The first coexistence problem is to co—register any of the
various data types to common geographic coordinate frames
of reference; but this is only the beginning. The
disparate data types must be simultaneously manipulable;
all data from a single geographic area, regardless of
format or content, must be read and write accessible within
a single 6IS process; subprocesses such a commands must
manipulate as many of the data types as logically feasible.

Structured Versus Non-structured

There is a continuing controversy in the GIS community 
between two seemingly disparate philosophies; between "non- 
ambiguous structured data model" and "a flexible and 
simplified data model." To explain this, let us 
investigate some of the major points of contention.

Real-time topology versus on demand structurings No one 
disagrees that topologically structuring of vector data is 
a boon to spatial analysis (Herring—86), but there is a 
controversy as to the manner in which the system maintains 
such a structure. The two logical alternatives are real- 
time maintenance (topology is always valid) and on—demand 
updating (topology is frozen at user chosen points and bulk 
updated or recalculated as necessary for analysis). These 
two alternatives are solutions to different problems. In 
older and less powerful workstations or systems, the real- 
time load for topological maintenance quickly uses 
unacceptable amounts of system resources. In the newer 
workstations or system (with 0.5 MIPS or better per user), 
the excess capacity of the system can be used to take 
advantage of a real-time maintenance system. These 
advantages include at least the following:

o ad-hoc combined spatial-attribute query and analysis 
o real-time geometric anomaly detection and prevention 
o better system utilization (% use of machine cycles) 
o intelligent user—feedback based on automatic analysis 

The most obvious recipients of these benefits are the data 
collection tasks (with the real time validation and 
verification) and what-if-analysis tasks (faster turn 
around on spatial queries or analysis based upon recent and 
tentative geometric changes). In summary, real-time 
systems provide a more flexible environment, and are 
preferable assuming sufficient system resources to maintain 
interactive response times. In non—interact!ve processes, 
maintenance is always less expensive than reconstruction.

Relational versus Object-Oriented Data Models This is a 
true non sequitur for a very simple reason: almost all 
GIS's (even those using a RDB) are already object oriented 
(see Ullman-88). An "object-oriented system" is one which 
supports an abstract concept "object" ("entity", "feature") 
having existence independent of any attributes that entity 
may or may not have. The opposite of this is a "value-
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oriented system" which models only attributes. For 
example, in a valued-oriented system such as a "classical" 
RDB, the entity (and any tuple representing it) owns it 
existence to a non—null key attribute combination, and any 
pair o-f entities (sets o-f tuples) having equal (key) 
attributes are equal (duplicates are eliminated). Such 
pure value—oriented systems can create confusion, such as 
two employees with the same name getting each others 
paychecks. To prevent this, most applications using RDB's 
assign "employee numbers." This same natural approach 
appears in linked graphics-attribute systems, where 
graphics are given identifiers ("graphic link", or "feature 
id"). This moves the GIS from the "value—oriented" world 
to the "object-oriented" world, since the system now gives 
meaning and existence to the graphic or feature "objects" 
independent of their spatial and non-spatial attributes. 
This does not mean that Object Oriented Data Bases (OODB's) 
are being used, since other requirements are levied against 
such system (at least encapsulation and abstraction), but 
it does imply that, taking use into consideration, many of 
the object-oriented concepts are natural extensions of the 
relational model. In fact, some classical problems in RDB 
design, referential integrity and normal forms, lead into 
object concepts. For example as early as 1980, three rules 
for converting an entity—relation model to a relational one 
were laid down by Wong and Katz (Chap. 21, Stonebreaker—86) 
( "()" added to identify equivalent OODB concept):

1) each entity set (object) has an explicit identifier 
(object id) which represents it globally in the 
relational model

2) the identifiers (object id's) of a primitive object 
(class) together with all the primary functions 
(attributes) of the primitive object are grouped in 
the same relation in the relational schema

3) there is one and only one primitive object (class)
per relation of the relational schema

They go on to show that these "mapping rules" lead to 
fourth normal form (4NF) RDB implementations. Looking back 
on this from the OODB point of view, we see that Wong and 
Katz have essentially proven that a straight forward, 
formal implementation of an object model in a RDB gives a 
4NF relational data base schema. Since this early 
parallelism, further work has brought the two data models 
closer together. For example, Rumbaugh-87 proposes 
including relations in formal OODB models; Blaha—88 suggest 
using object-oriented models to design RDB schemas, 
formalizing what now occurs naturally (see above); and 
Ullman—88 proposes an extended entity—relation model as a 
supei—model for both RDB's and OODB's.

A complete BIS system, regardless of its implementation 
details, must be able to communicate with all data bases 
capable of storing geographic data, including both RDB's 
and OODB's. Since DBMS can only rarely exchange raw data, 
this implies compliance with standard exchange formats and 
protocols (possibly based on object-oriented extensions of 
SQL standards, see Herring-88).

Single-content Multiple Layers versus Mult i pie-content 
Single Layer: (whether- to merge all the data into a single 
integrated geometric structure or to maintain separate 
layers, merging only for analysis). These two options are
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actually the opposite ends of a broad spectrum o-F passible 
data-base schemes involving various levels of integration. 
Each application, and each user has di-f-fer-ing needs based 
upon the particular work-flow, analysis requirements, 
processing power, inter-department inter-faces, etc. Even 
then, the requirements may vary between subsystems within 
the users' DP community. The considerations in deciding 
which data types (themes) to aggregate into single 
topologies (layers) are quite varied. They include at 
least the -following:

o the amount o-f shared geometry between the themes,
o the degree in which they are combined in the usual 

course of GIS processing,
o the common source and maintenance responsibility.
o data complexity and storage requirements within a 

theme, and
o the geometric or non—geometric quality of a theme. 

Sliver and gap detection, elimination and prevention is 
very costly, so that themes which tend to share a great 
deal of their geometry should probably be integrated at the 
master data base level to prevent high initial access time 
for applications requiring integrated data. The same is 
true for data that is often used in combination during GIS 
processing, again to save the repeated cost of the merge 
process. Common source and maintenance responsibility 
allows for easier integration.

So each user must be able to select from the broad 
spectrum of data structures, most often deciding on a 
master data base with multiple layers each with multiple 
content.

Implicit Data versus Explicit Data8 In a RDB, some 
contend that relationships are only implicit since they are 
"derived" through the join process. While technically 
correct, this view ignores the fundamental problem of 
referential integrity. Suppose for example, that in a 
Wong-Katz RDB implementation, there are tables for road 
"segments" and other tables for "highways," and that these 
entities are linked via a specific ownership relation. 
Thus, one of the segment tables would have an attribute for 
highway-number, acting as a foreign key into the highways 
tables' primary key. If the user wishes to report on "all 
road segments that belong to particular highways," then the 
needed join on highway—number is valid since a common value 
means ownership (is valid semantics). If the data base 
exhibits referential integrity, then each value of highway- 
number in a segment table corresponds to a valid and 
correct highway-number in a highway table. On the other 
hand, if the join where done on other integer valued fields 
(such as segment.width-in-meters = highway.age-in-years) 
the results might be nonsensical. Thus, even though the 
tables appear to be without structure, there is an implied 
structure based upon the semantic meanings of attributes.

The distinction then between structured and unstructured 
data is whether or not the DBMS system is aware of the 
structure that naturally exists within the data. In a GIS, 
this includes common attributes and common geometry. In a 
RDB environment, this means that the system is aware of any 
foreign key attribute value and support procedures to 
maintain referential integrity; in a OODB, this means that 
any foreign key is implemented through object relations.
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Valid non-causal joins (those based upon attribute 
relations not involved in -foreign-key to primary-key 
linkage), represent a extra-system (user) interpretation o-f 
the data. Thus, the user is placing an interpretation on 
the data base not considered during its data structure 
design phase. Whether this query derives valid information 
depends upon the correlation between the semantic 
interpretation of the data analyst and the data extractor.

Thus, a GIS, during normal operations, should maintain 
the correct interpretation of the data (referential 
integrity). But, in non-causal joins such as used in 
statistical analysis, the GIS must allow the user to 
override the default interpretations.

Integrated versus Linked Attribute-Braphics

The most obvious problem in a system supporting such a wide 
variety of data types is to minimize the number of lower- 
level data management systems involved in the GIS. The GIS 
must hold and manipulate several types of stored 
(persistent) data as listed above, in addition to non- 
persistent, application data (point buffers, the temporary 
results of query, display information, window information, 
temporary command information, etc.).

The most controversial element is the linkage between 
vector (or topological) data and feature attribute data. 
The classical approach is to split the two data types at 
the graphics-to-attr-ibute juncture. This creates a gap 
that must be hurdled every time a combined spatial- 
attribute edit or query is executed. The extreme 
alternative is to place all attribute information in the 
same DBMS as the graphic information. This is not 
generally feasible in the RDB world due to its value- 
oriented programming implementation. Graphic operations 
(such as simple display) require the access of large 
amounts of diverse data (an average graphic window might 
contain 500 kilobytes of information distributed among 
2,5OO data items of differing types). This would require 
an RDB to access multiple tables, and return large amounts 
of structured data. Currently, commercial RDB's are simply 
incapable, by several orders of magnitude even on the best 
systems, of reasonable response times in such situations. 
Further complicating the process, RDB's usually require INF 
(first normal form, all column data types are simple), 
while geometric data in inherently not INF (e.g. coordinate 
lists). OODB's by their very definition, and some of the 
more theoretical RDB's, support abstract data types and 
alternate access methods such as triggers (Stonebreaker—86, 
Andrews—87) which render such problems solvable.

On the other hand, a single data management system for 
attributes and geometry simplifies the system, making real- 
time topological maintenance (see above) and integrated 
spatial-attribute ad-hoc query (see below) possible. This 
implies, as in the real—time topology discussion, the 
implementation of the geometry—attribute linkage is a 
function of the performance level and sophistication of the 
system.

When large amounts of static, persistent data are linked 
with the geographic data (such as well logs in petroleum 
applications), data size can become a problem. Therefore,
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the application or user must decide which data to integrate 
and which to segregate (to other nodes in a distributed 
system, see below). The criteria that a-f-fect this decision 
are basically the same as the layering criteria below (i.e. 
some o-f the layers are non—geometric) . Some data such as 
raster, and dense grids are so storage space intensive, 
they probably should be stored in the most efficient manner 
passible such as indexed run-length-encoded or quadtree 
structured -files. Even so, -foreign linkages must exist in 
main DBMS to hold integration information such as co- 
registration parameters (see below).

In summary, some degree of tight integration between 
attributes and geometry is required to support full GIS 
capabilities; but, the degree of integration between layers 
of the data should be user and application controllable 
system configuration decisions.

Communi cat i on

Once coexistence has been achieved, the next most important 
criteria is communication between the data types. For 
example, the passing of geometric descriptions should be 
possible between any two domains. For example, the raster- 
subsystems must be able to perform classification 
algorithms based upon vector area criteria; and raster- 
line-following and polygon classification must be usable in 
vector digitization and spatial query. This requires that 
each of the data subsystems support common protocols for 
the transfer of at least geometric information. Across 
diverse systems this implies universally acceptable 
exchange standards. Within a single multi-content system, 
internally defined protocols are more efficient.

SPATIAL QUERY

It is in spatial query that a BIS is most distinct from 
standard DBMS implementations. For example, in a RDB there 
is no interpretation of the data in spatial terms, since 
such interpretations depend upon the particular abstract 
representation of space chosen by the application. Thus no 
reasonable set of spatial operators can exist in the pure 
form of the RDB model. On the other hand, a GIS data base 
system sole purpose is to incorporate spatial operations 
into the other more conventional DBMS functions.

This leads to a nearly insolvable problem. Spatial 
extent is different from other data types: non-INF, non- 
declarative geometric algorithms even for simple comparison 
(e.g. point-in-polygon), etc. In fact, many spatial data 
bases separate the spatial and non-spatial data, into two 
systems (see above). This usually means that an integrated 
spatial query language is impossible, and such systems must 
rely on a tool-box approach to spatial analysis, 
implementing spatial operators as separate procedural code 
which the user alternates with the non-spatial query 
language to do analysis. This is the ultimate (worst) in 
procedural approaches, forcing the user to specify each 
transition from the spatial arena to the non-spatial arena 
("procedural" queries specify how data is manipulated, 
"non—procedural" or "declarative" query specify what 
results are required, leaving the procedural decisions to
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the DBMS). Spatial operators are thus object—oriented and 
essentially procedural, and out o-f the usual domain of a 
declarative query language.

This leads to an interesting paradox. GIS's built on 
RDB's should expect to gain the advantage o-f the non 
procedural , declarative query language, but do not due to 
the nature o-f the spatial data; leading to a procedural 
spatial query and analysis environment. GIS's built on 
OODB's, which are naturally procedural (see Ullman—88), 
supply as applications those procedures needed to do 
spatial query and analysis, thus allowing the GIS users and 
applications to reside in a declarative, non-procedural 
environment (see Herring-88).

FOREIGN DATA BASE LINKAGES

The data size in GIS's, and the need to access large 
volumes o-f non-spatial data, require that the question o-f 
distributed, non-homogeneous data bases be addressed. 
Since much has been written on the general problem o-f 
distributed data bases (e.g. Ullman-88), we will 
concentrate on the mechanism to link the data within the 
data bases together.

Geographic Link«q»«i The most common way o-f linking GIS 
data is common geographic location. For disparate data 
contents (different layers), this is sufficient since most 
co—location is not causal and subject to some statistical 
interpretation anyway (this data-layer independence is a 
measure of the success of the layering, see above). For 
common data content (dependent layers or adjacent data 
collection cells), it is not sufficient. Absolute error is 
much larger than the possible relative error, and usually 
larger than the micro-structure of the geometry (such as 
real road misalignment at intersections).

Explicit Linkuqami In a RDB, explicit linkages, as 
internal foreign keys, are implemented by a set of common 
attribute values. In a GIS implemented upon the RDB, these 
linkages can be logically either value—oriented or object- 
oriented, depending upon whether the system allows direct 
application or user access to primary and foreign keys. In 
a OODB, such linkages are maintained by the DBMS itself 
through linkages based upon internal object id's. Value- 
oriented linkages are still possible through common 
attribute values.. As within a single DBMS, concerns of 
referential integrity suggest that the GIS maintain object- 
oriented linkages.

THE DATA SERVER

The environment of the GIS with its multiple data
formats, partitioned data, multiple foreign data linkages,
places heavy requirements on the management of data at the
macroscopic level. This management system, here called a
data server, must fulfill at least the following functions:

o maintain data on the content, accuracy, format,
geographic extent, and storage location of all data
sets, including versioning;

o maintain source utilization and production histories; 
o translate standard exchange formats to and from 

internal formats;
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o control access to data;
o manage schema and view in-formation

Much of these are standard DBMS concerns, so we shall limit 
ourselves to items which take on a special meaning due to 
the geographic nature of the data.

The Geographic Index» The geographic index necessary 
for a distributed GIS is a GIS itself, since the partitions 
are associated to their spatial extent. Spatial query and 
analysis tools used directly on the data are needed in the 
index to support production management and distributed 
analysis (analysis covering some number of partitions, 
executable from the index, which distributes processing and 
data to the appropriate partitions, possibly distributed).

Schema Management; In any non—homogeneous distributed 
data base, the schemas of partitions may vary based on 
layer, data format and type, etc. Further, data collection 
and various analysis tasks may require different schemas 
(simple for collection, complex for analysis), which in 
turn differ from master data base schemas. The data server 
must provide a set of schema management tools such as:

o a generic schema definition interface independent of 
underlying DBMS's (facilitating inter-DBMS exchange);

o the association of partitions to appropriate schemas;
o update functions for maintaining consistency between 

the schema and all partitions of a single layer;
o a schema merge capability to allow multiple layers to 

be combined into single data sets for analysis;
o translation functions between different schemas and 

user views to allow inter—application sharing of data 
This schema management requirement is independent of 
whether the GIS is based upon a RDB or an OODB. Currently, 
most non-geographic systems avoid this problem by insisting 
upon "all data in a single data base," an unacceptable 
approach for GIS's due to data volume and diversity.

Access Control Locking and Concurrency: Access control 
requirements in a GIS differ widely from those in 
conventional DBMS's. First, standard record, or table 
locking is nearly useless, since data is usually accessed 
based upon common location, not data type. Some form of 
"area locking" is more appropriate. This is especially 
true for topologically structured layers, where a few data 
types (face (polygon), edge (arc) and node (point)) are 
evenly distributed so that a single table lock could bring 
all but one user to a halt. This is even a greater problem 
in a RDB which locks tables after a threshold number of 
tuples have been locked. There are two basic solutions: 
partitions locking or object—oriented locking. In the 
first, a partition is locked completely while a user 
modifies it, resulting in a long transaction (hours or 
days). In the second, side effect locks can be controlled 
at the object class level. In a topological data base 
(Herring—87), standard locks could be used on feature data, 
and proximity locks on topology (not allowing two users to 
modify the same or adjacent faces simultaneously).

SUMMARY

The GIS implementations problems are much more complex than 
found in any non-spatial DBMS. Thus, not only should GIS 
research investigate the forefront of data base technology,
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it should also be driving RDB and OODB research to 
investigate specific geographically-related problems. 
Further, we must recognize the inevitability of diverse GIS 
data and GIS implementations and concentrate on a rational 
set o-f exchange standards capable o-f supporting diverse, 
real-time, distributed, geographic processing.

ACKNOWLEDGEMENT

The issues and solutions presented in this paper represent 
six years o-f continuous interaction, within Intergraph and 
the GIS community. I wish to thank everyone who has 
participated in any o-f these discussions, especially those 
directly involved with TIGRIS requirements analysis, 
design, and implementation.

REFERENCES

Andrews, Timothy, and Craig Harris; "Combining Language and 
Database Advances in an Object-Oriented Development 
Environment"; OOP5LA ' 87 Proceedings; ACM; October 4-7, 
1987; pp 430-440.

Blaha, Michael R., William J. Premerlani, and James E. 
Rumbaugh; " Relational Database Design Using an Object 
Oriented Methodology"; Communications o-f the ACM; 
vol 31:no 4; ACM; April 1988; pp 414-427.

Herring, John R., "TIGRIS: Topologically Integrated 
Geographic In-formation System"; Proceedings of 
AutoCartoB, March 1987, Baltimore, Maryland, pp. 282- 
291.

Herring, John R., Robert C. Larsen, and Jagadisan 
Shivakumar; "Extensions of the SQL Query Language to 
Support Spatial Analysis in a Topological Data Base"; 
GIS/LIS'88 Proceedings; ACSM, ASP/RS, AAG, URISA; 
November 3O - December 2, 1988; pp 741- 75O.

Rumbaugh, James; "Relations as Semantic Constructs in an 
Object-Oriented Language", OOPSLA'87 Proceedings; ACM; 
October 4-7, 1987; pp 466-481.

Stonebreaker, M. 1986, ed. The INGRES Papers; Anatomy of a 
Relational Database System, 1986, Addison-Wesley, 
Reading, Massachusetts.

Ullman, Jeffery D.; Principles of Database and Knowledge- 
Base Systems, Vol 1_; Computer Science Press; Rockville, 
Maryland; 1988.

837




