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Abstract

An algorithm is presented for obtaining the shortest path between two points on a terrain 
represented by a triangular-faced polyhedron. The terrain model is hierarchical, i.e. it has 
several level of precision, the representation at each level refining the previous one.

The proposed algorithm consists of two phases In the initial phase, terrain representations 
at increasing precision levels are searched for regions where no optimal paths can trespass; 
these regions are not to be considered any further. In the final phase, a standard shortest path 
algorithm is applied on the remaining areas ^

1 Introduction

A renewal of interest in path finding problems has occurred recently, spurred by several circum 
stances' a greater number of scientists in geometrical and combinatorial problems, the appeare- 
ance of inexpensive and powerful computers, and the coming of age of germane applications in 
robotics, in navigation, in CAD-CAM, etc. >

This work deals with efficiently obtaining shortest paths on a triangulated terrain model with 
r vertices. Were the paths restricted to traversing the terrain through the triangle's edges and 
vertices, Dijkstra algorithm [AHO 74] would yield the solution in (v lotj(v))t\me. Unfortunately, 
this approach does not necessarily render an optimal path. The best available exact solution, 
due to D Mount [MOUN85], solves this problem in O( r 2 lot/( /•)) time.

A computational time proportional to the square of the number of datapoints is not entirely 
satisfactory. To that effect, efficient approximate methods that circumvent that difficulty have 
been devised [SMIT87] Although fast approximations are very convenient, it is also suitable 
to consider the improvement of < rnci path finding methods. This work describes an heuristic 
that prunes the search region prior to the application an exact optimization algorithm. Our 
heuristic considers a hierarchical terrain model and a staged elimination of unnecessary regions, 
each stage corresponding to a level in the hierarchy

Reduction stages use a branch-and-bound procedure. The steps involved are:

Branch All remaining triangles are subdivided; afterwards, a reasonable short source-destination 
path on those triangles is generated. The length of such path is an upper bound on the 
shortest distance, and will be called u.

Bound Let < be an edge in the triangulation. Two functions ,S'f (/>), Df (p) defined for points 
p € f are computed; these functions bound from below the distance of p to the source 
and destination respectively. All regions circumscribed by polygons whose points obey 
•*>'.(/') + D<(l>) > " can be discarded, for no shortest route can cross them.

'This woik was developed while (lie aiifliois weie at Hie Klx tii< al EngiiR. Dept. al CIN\ KSTA\ -II'N. 
Mexico. 'I he second anlhoi was Mtppoiled l>v a ('OSNIiT schol.usliip
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This paper is organized as follows: Section 2 reviews the terrain model used; Section 3 
introduces Mount's algorithm while Section 4 will explain our method. Finally, the last section 
presents an experimental result and conclusions.

2 Terrain Models

The model used here considers a sequence of n + I triangulations {To}. • • •, {T,,}, as in 
[BARR87]. Each triangulation is a njincnnnt of its predecessors, i.e. for 0 < k < u , all 
vertices of { l\} belong to the set of vertices of {^ + 1} and each triangle of {'/fr+i} is con 
tained in a single triangle of {1\}.

Any triangulation {/',} obeys two conditions:

i) Its vertices, for whom altitudes are available, form a square grid of ('2' -f I) x ('2' + J)
points, 

ii) A triangulation similar to the ones in Fig. 1 is induced on its vertices
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c)

Figure 1: Representation of Triangulations

Also, at the finest level {/'„}, the altitude of any point in the terrain must be accurately 
described by a linear interpolation of those of the vertices of the triangle containing that point.

2.1 Positional keys for vertices and edges

A imsitinnal ki >/ that consists of a string of symbols of the alphabet {1,2,'),•!} terminated by 
a symbol {()} is assigned to each point in the original ("2" + I) X (2" -f J) array. In our model, 
the positional key of a point is obtained by a Morton encoding (a.k.a bit interleaving) of its 
coordinates. Fig. l.a, l.b, l.c show three levels of refinement with some of its corresponding 
keys.

Since there is a one-to-one correspondence between positional keys and coordinates, the 
terrain model can be stored as an ordered list of pairs of {key,altitude}. The manner in which 
two keys are compared is also relevant: if the comparison is lexicographical (i.e. \'2'-W < I 10) 
the points are ordered following a Peano curve; if the comparison is numerical (i.e. MO < I2M) 
the points are stored by levels of refinement' first {1\}}, then {7'i}, etc.

The edges of triangles in a model { l\] will be assigned a positional key as well. In order 
to exploit the iii(nn>toiii< tty property, to be introduced in Section 3, triangles will be oriented 
(Fig 2.a ); i.e. an edge will have a separate version or "directed edge" for each triangle it 
bounds. Since our model is made of isosceles rectangular triangles, directed edges can have only 
six directions, coded as shown in Fig 2.b. Therefore, both vertices and directed edges will be 
encoded in a single way prefixing the positional key of the initial node with the direction code
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a) Two copies of an edge
b) Six possible directions of 
a directed edge

Figure 2: Oriented Edges

(a single node is supposed to have direction '0'). This unifying method of encoding is called an 
( -<'(><!< .

Considering a terrain model as a hierarchy of refinements and employing a uniform coding 
schema for vertices and edges is advantageous: their usage favors data compression and provides 
our procedures with efficient search algorithms.

3 Method of Mount

The (unique) shortest path between two points on a plane is the straight line that joins them. 
This result has counterparts for the case of polyhedra, both convex and non_convex.

In the remainder of the work it will be assumed that the faces of the polyhedron are triangles, 
and that both the source .s and the destination d are vertices of them. Unless otherwise stated, 
all paths will start at .<; and end at il.

This section initially presents necessary conditions for shortest paths, first for convex poly 
hedra and afterwards for the non-convex case. Finally it will sketch an exact shortest path 
algorithm due to D. Mount [MOUN85].

The concept of a plnrinr iniffildinyis needed to proceed with the presentation. Let F\ • • • /•',„ 
be the sequence effaces traversed by a path. As said above, .1 and d are vertices of F| and /''„, 
respectively. A series of affine rotations Ji, • • -,,l m can be applied to the faces so that:

. I; (Ft) is on the (.r,y) plane

If i f. is the common edge between the faces
coincide.

and , then /IA( and

The sequence of faces <M FI )•••.!„,( F,,, ) for a given path is called its planar unfolding, 
since after the transformations the path will lie flat on the horizontal surface. 

The following necessary condition can be stated using unfoldings:

Condition I In a convex polyhedron, the image of an optimal path on its planar unfolding 
must be a straight line.

Figure 3 shows a pyramid, a shortest path and its unfolding.

Condition I is not sufficient: if the bottom of the piramid in fig 3. a is ignored, the paths 
between the extreme points might cross two possible sequences of faces: F«F.s/ 'i Fs and l-\ /'j. 
The planar unfoldings of both sequences admit a straight line between source and destination 
(Fig 3.b). The first path is trully optimal. The second one is a local optimum, i.e, best among 
of all possible paths through that secuence of faces. Cases can be found where several optimal 
paths exist.
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a)

Figure 3. A shortest path on a Convex Polyhedron and its unfolding

In the case of a non.convex polyhedron, the mapping of an optimal path on its planar 
unfolding will not necessarily render a straight line. Condition I becomes :

Condition II In a non-convex polyhedron, the image of an optimal path on its planar unfolding 
must be composed of one or more straight line segments; any two consecutive segments 
must be joined at a vertex of a face and the angle between them must be at least 180 
degrees.

Fig 4 illustrates that condition, which again is only necessary for the optimality of a path. 
Paths obeying it are called geodesies; they can be proved to be locally optimal, i.e. all detours 
inside the planar unfolding render longer distances.

Figure 4: Planar Unfolding on a nonconvex polyhedron

Geodesies are interesting: they are uniquely specified by the sequence of its traversed faces 
( called "history") and the optimal paths are counted among their numbers.

The generation of histories is straightforward: Fig 5.a shows a polyhedron, and Fig 5.b the 
connectivity graph of its faces. Fig 5.c displays a tree whose nodes are labelled with the names 
effaces: Its root with A and its leaves with I). All possible histories that start with ,1 and 
end with I) correspond to paths between the root and a leaf of 5.c. Any initial segment of an 
history will be called a partial history.

The generation of histories is similar to the exploration by gradual expansion of all possible 
paths in a graph. Thus, the process of generating Fig 5.c from the data of Fig 5.b starts with 
A as the only partial history. Two histories AD and A I) are generated by the extension of I; 
,\l) has reached the destination and will not be further extended, so AD is extended to render
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two partial histories MK' and A IK.,', which in turn are extended to AJiCD, AI1CF, ADd'F, 
etc

a) A polyhedron b) Its face adjacency graph c ) Histories from A to D

Figure 5: Faces and histories

Two things must be noted in the example of fig 5.c:

• An edge between two faces can be crossed in both directions ( e.g. in Fig 5.c the edge 
common to (' and / belongs to A DCFED and AHd'FCD). Considering an edge as 
made of two directed copies or d.edges simplifies greately the computations. Thus, the 
edge common to (' and /•' will have two copies- a d_edge to go from f to F, and another 
one to go from /•' to ('. As shown in Section 2, directed edges can be easily accessed in 
our model by means of its e_code.

• A d.edge might be found in more than one history (as CD, found in A DC I) and 
A IK,'I Y 'D )

The characterization of geodesies by means of histories drastically reduces the number of 
paths considered for optimality, and it suggests a method based on the generation of histories. 
It presupposes the existence of a heap of histories ordered by the shortest distance of its shortest 
geodesic, of a floating point number /) that measures the shortest geodesic found so far, and a 
function ili.<ttiinci(lii.?lnry) that renders the length of the shortest geodesic inside that history.

The algorithm has the following steps:

i) Push all faces neighboring the source into the heap. D = oo 
ii) In.<>tnry = pop(h«ip) 

iii) if (li.tttiiici (history) > D, terminate the algorithm. The shortest geodesic found so far is
an optimal path, 

iv) If lii.tlofij has reached the destination, make /) the minimum between the old D and
<li*l<inc((hi.<>lnry). Else extend history and push all its descendants into the heap, 

v) Go to i)

The algorithm in [MOUN85] is based on those ideas. Its implementation employs a con 
struction called "wedge", that resumes a partial history A new wedge is generated every time 
a history is extended and collides with a new directed edge. Among other information, a wedge 
contains

• The address of the directed edge.

• The wedge's basis, i.e. a characterization of the set of points on the edge reachable by 
geodesies inside a planar unfolding.

• A function that renders the distance from all points on the basis to A.

• A pointer to the previous wedge in the history
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The cited algorithm considers directed edges. This artifice makes the problem monotonic, 
i.e. makes all edges traversable in only one way. It can be proved that monotonicity guarantees 
the connectivity of the basis of a wedge, thus greatly simplifying the computations. The distance 
from a point /; on a wedge's basis to .s is given by a circle, that is, by a formula of the type 
(/>r - i'o) 2 + (/>i/ - '/n) 2 + c, where />,--/',/ are coordinates of /> on the planar unfolding . The 
number of wedges that can coexist on a given directed edge is proportional to the total number 
vertices. Since the number of directed edges is proportional to that of vertices, O(i' 2 ) wedges 
might be generated and the algorithm needs O(r 2 ) memory. Considering that the wedges have 
to be kept on a heap gives a computational complexity of O( i' 2 /«f/( r))

The algorithm has been only sketched, and many features related to the extension of a wedge 
have been omitted; e.g. how a wedge might be split, narrowed or turned around a vertex. The 
basis of two wedges can also collide on a directed edge; in that case at least one of the basis 
must be narrowed so as to keep them disjoint.

4 Proposed Method

Existing optimal algorithms for the shortest route problem require a O( i> 2 /w/( r)) computational 
time. This means that the amount of computation grows with the square of the number of 
vertices, and with the fourth power of the precision.

Those figures tempt the user to decrease as much as possible the number of points under 
consideration and to perform the reduction at coarse scales.

That seems generally feasible. Even though there are times when an optimal solution occu 
pies all triangles, in most of the cases only a fraction of the terrain is traversed by an optimal 
route. The greater percentage of the computation time is spent in fruitlessly exploring regions 
in which no optimal solution can exist.

Thus, a preprocessing method that reduces the area under exploration is indicated. The 
amount of preprocessing should be further diminished if that method is successively applied on 
increasing finer terrain models.

The procedure selected is one of the branch and bound type. The algorithm has the following 
steps:

i) Select the coarsest terrain model as the work triangulation {/'„,}• Initially, all of its triangles
are available, 

ii) Obtain a (/ood path that traverses only those triangles available from {/'„,}. Let (/ be its
length, 

in) For all points /> on the boundary of the triangles of {/'„,} obtain a lower bound on the
distance ,S(/>) ( or D(i>)) to .« (or d)

iv) Discard all triangles enclosed by a cycle of directed edges obeying S(p) + l)(p) > » 
v) If the triangulation is already at its finest level, apply an exact algorithm, otherwise make

{/'„-} a refinement of the available triangles, and go to step i).

An example of the application of those ideas is the following:
Suppose that .1 and <l are located at (-/.(),()),(/. 0.0). Then, for all points /> on the terrain, 

,V(/;) and l)(i>) can be given by the distance of the horizontal projection of /; to .«< and d 
respectively. If a path of length u is available, then no optimal path can go outside the ellipse 
whose locus is given by 2(.v/u) 2 + 2(i/) 2 /(u 2 - I 2 ) = I

All triangles outside the ellipse can be discarded. Fig. 5 illustrates this concept.

The elliptic formula gives a good initial reduction, but can only work on flat surfaces. In 
order to proceed to better approximations, a method to obtain fj(p) and D(p) was developed 
that simplifies some features in an exact algorithm.

In an exact algorithm:

• The distance to .s from points on the base of a wedge is given by a circle.
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Figure 6: The elliptical approximation

• ()(r) wedges with mutually exclusive basis can coexist on an edge.

• The wedge closest to .« is expanded, making it possible for O(i') wedges to be expanded 
on a single edge.

In the algorithm for obtaining lower bounds, a construction rrillul fippmriitHttfd wrdyr 
(ap.wedge) will be used. For any given directed edge:

• The distance from points in an ap_wedge base to the s or to d is given by a circle.

• Up to a constant number of ap.wedges can coexist on an edge.

• Only one ap.wedge can be expanded per edge. Several ap.wedges can coexist on an edge 
prior to expansion When expansion is to be performed, a subtending ap.wedge, i.e. one 
whose distance to the origin is not greater than any of the existing ap.wedges, should be 
obtained.

Lower bounds ,V(), I)() are obtained by the following algorithm, that consider only those 
non-discarded edges:

i) Obtain ap-wedges for the edges neighboring .1 (or d). Expand them. Push their expansions
into the heap.

ii) If the heap is empty, terminate, 

iii) ir<d</( = i><>i>(h( up). Let < be the corresponding edge, {\\ f } be the set of wedges residing
on (. Complement (II V} with the expansion of those ap.wedges that have not affected it
yet. 

iv) Let icff/r/f' be a wedge subtending {IIV}. Expand wrdt/c', and push into the heap those
new ap.wedges that are not incident on an expanded edge, 

v) go to ii)

The previous method for evaluating .S'(/>). /?(/>) takes care of all those regions enclosed into 
polygons whose points obey S(i>)+1)(i>) > n The respective internal edges will not be expanded 
and, therefore, their interior regions will not be considered.

5 Example

Fig 7 shows the results of our algorithm in a 9 x 0 terrain model, with three stages of reduction. 
Overall terrain reduction shown in Fig. 7.a was -10%.
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a) Horizontal projection b) Optimal route

Figure 7: An Example

The computation time was 6 minutes in a PC-XT without floating point accelerator. The 
exact method lasted 8 minutes.
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