
ACCESSING SPATIOTEMPORAL DATA IN A TEMPORAL CIS

GailLangran
Department of Geography, DP-10

University of Washington
Seattle, WA 98195

bitnet: langran@uwavl

ABSTRACT
This paper evaluates ways to boost the performance of spatiotemporal data
access in a temporal GIS via strategic partitioning and indexing. Using a
specific conceptual model as an example, the discussion describes a
taxonomy of access methods and explores the methodogical options
available.

INTRODUCTION
Effective access methods for spatiotemporal data are vital to the
development of effective temporal geographic information systems.
Because the access scheme of an atemporal GIS has major performance
impacts, we can expect the spatiotemporal corollary to be similarly
influential upon temporal GIS performance.

Although many alternate methods of representing temporal geographic
data surely exist, this discussion builds upon a specific conceptual model
that is described elsewhere in some detail (Langran and Chrisman 1988),
and which was first suggested by Chrisman (1983). This model, called a
space-time composite, represents spatiotemporality by accumulating
geometric change into one integrated topological description. Each
successive change causes the changed objects to break from parent objects,
creating new objects with histories distinct from those of their neighbors.
In other words, the representation decomposes over time into the area's
greatest common spatiotemporal units; each unit's history is described by a
variable-length list of attribute sets bracketed by effective dates.

Figure 1 shows a space-time composite of temporal census-tract data.
Polygons 1, 2, 3, and 4 are the greatest common spatiotemporal units of
Census Tracts A, B, and C. Until 1980, only three polygons represented the
three census tracts because Polygon 3, being part of Tract B, was
incorporated into Polygon 2. Then in 1980, the area represented by Polygon
3 moved from Tract B to Tract C, creating a fourth polygon with a distinct
history from its neighbors.

We can reconstruct any time slice from the space-time composite by
referencing the attribute histories of its objects to find the attribute sets that
were current on the requested date. This tack obviously works for small
numbers of objects with shallow histories, but it is reasonable to ask
whether the data processing burden is manageable given realistic
geographic data volumes. Clearly, a complex query could swamp a system
without an access scheme to boost performance.

191

Census tracts: 1960 to 1980

population
1960 1970 1980

1960:TractA//
1960:TractB//
1960:Tract B / 1980:Tract C //
1960 Tract C//

Figure 1. Temporal census-tract data represented as a space-time composite. Polygons
1, 2, 3, and 4 are the greatest common spatiotemporal units. Polygon 3 was part of
Tract B until 1980, when it moved to Tract C. Census statistics such as population
require no special treatment because time is symmetric with respect to other attributes.

QUERIES TO A TEMPORAUGIS
Table 1 lists potential queries to a temporal GIS. The listing distinguishes
between forays into the past and future because the mechanisms for
"examine" and "extrapolate" could differ depending on whether data are
stored or computed.

Table 1. Temporal GIS queries.

Examine an object's history.
Extrapolate an object's future.
Examine a single time slice.
Examine an object's history; when the object meets some criteria, examine that time
slice.
Extrapolate an object's future; when the object meets some criteria, examine that time
slice.
Examine a single time slice; examine the histories of objects meeting some criteria.
Examine a single time slice; extrapolate the histories of objects meeting some criteria.
Examine the histories of all objects.
Extrapolate the futures of all objects.
Examine time slices, going backward through time.
Extrapolate time slices, going forward through time.

If we ignore extrapolated information and concentrate on accessing stored
data, four primitive queries lie at the root of Table 1's eleven queries:

simple temporal query, i.e., what is the state of an object at time t?
temporal range query, i.e., what happens to an object over a given period?
simple spatiotemporal query, i.e., what is the state of a region at time t?
spatiotemporal range query, i.e., what happens to a region over a given
period?

192

Access Mechanisms for Query Response
The space-time composite describes all temporality via time stamps in the
attribute database, which permits us to treat time aspatially and space
atemporally. Changes to geometric objects spawn new objects and break
existing objects; these fragments replace the previous unbroken versions.
By definition, each object in the space-time composite has a single
geometric and topological description throughout time.

Thus, the temporal access mechanism for a space-time composite operates
primarily on an attribute database, which is cross-referenced to the spatial
representation. For the sake of simplicity, this discussion assumes that the
attribute database is relational (here called an RDB) and that tuple versions
correspond to object versions. Current RDBs can be fortified by a suite of
indexing methods which, unfortunately, are almost solely one-
dimensional (Freeston 1987). By stepping through the algorithms required
to respond to the four primitive queries, we can comprehend how their
requirements exceed standard RDB and GIS accessing capabilities.

Simple Temporal Query. The goal of the simple temporal query is to
find an object version that was current on a specified date. Ideally, the
system could search for the tuple whose "Object = ID" and "Time = T." But
a temporal database is event-driven so a tuple will not necessarily have a
time value to match every T. In essence, an object lifespan can be
considered a chain whose nodes are the object's birth and death, and whose
vertices are the points where the object changed. To time slice the object is
to locate the value of a point along that chain based on the time stamp that
equals or immediately precedes the requested time. This implies that
ordering an object's versions within storage would be helpful.

Temporal Range Query. To respond to a temporal range query, the
system must locate all versions of the desired object that were current
during any part of the specified time span, i.e., where Object = ID, Time <
Maximum Time, and Time > Minimum Time. The system could select all
qualifying tuples; or if tuples are temporally ordered, the system could
locate a tuple at one end of the desired time range then "walk" through
time-sorted object versions until reaching the other end of the range.

Spatiotemporal Queries. The preceding two queries focus on single
objects that meet temporal criteria. In contrast, spatiotemporal queries
request all objects within specified spatial and temporal ranges. To respond
to a simple spatiotemporal query, the system clips the desired region from
the space-time composite, locates all attribute records for the desired region
as of the desired time, then dissolves the chains that separate polygons of
like attributes (i.e., recomposes the greatest common spatiotemporal units
into greatest common spatial units). Alternately, the system can first access
the required attribute records, then match them to the space-time
composite. Responding to a spatiotemporal range query is the same as a
simple spatiotemporal query except the system seeks attribute records
falling within a space-time range.

193

The Search Space of the Four Queries
While the data space of these four queries is three-dimensional (two space
and one time dimension), a closer look reveals that the queries define
ranges of zero, one, two, and three dimensions, respectively. Query One
defines a degenerate range, the point in data space that describes an object's
state at a given time (for example, the location of a tuple that references the
attributes current at that time). The data that satisfy Query Two lie along a
vector that traces the changes undergone by a specific object over a specific
period~a one-dimensional range. The response to Query Three occupies
an orthogonal plane a two-dimensional range. And the objectives of
Query Four are located in a cube embedded within the GIS data space
defined by a one-dimensional time range and a two-dimensional space
range (Figure 2).

Figure 2. The search space of four primitive geographic queries in a three-dimensional
data space, (a) A simple temporal query references a single point in space, (b) A
temporal range query references a vector along which the desired data lie. (c) A simple
spatiotemporal query references a plane within which the desired data lie. (d) A
spatiotemporal range query references a cube within which the desired data lie.

RESPONDING TO TEMPORAL GIS QUERIES
Understanding the number of dimensions involved in a query is helpful
in selecting the most effective means of response. Noronha (1988) and
Chrisman (1988) provide recent discussions of multidimensional data
access methods. Unfortunately, many methods that are termed "multi-" or
"k-dimensional" can access only zero-dimensional ranges in a multi
dimensional data space. While such methods hardly seem worthy of their
name to those accustomed to working with multidimensional ranges in
multidimensional space, their intent is to facilitate "composite key" or
"multikey" retrievals. Such retrievals seek a subset of records in
k-dimensional space, one dimension per attribute. Table 2, drawing on
Noronha's discussion, lists methods designed to access data in a
multidimensional data space according to the number of ranges each can
treat.

Given the accessing options available for zero-, one-, and
higher-dimensional ranges, the next step is to examine the methods that
treat k-dimensional ranges in k-dimensional space (Table 2's third
column), since these are the methods that potentially provide a single
means of rapid response for the four primitive queries of a temporal GIS.

194

Table 2. Accessing ranges of zero, one, and more dimensions in k-dimensional space.

Zero-dimensional One-dimensional K-dimensional
K-d tree * Strip tree 10 R-tree * *
K-d-b tree2 R+ tree 12
Multikey hashing3 Packed R-tree 13
Extendible hashing4 Cell tree 14
Point quadtree^ Grid file 1 5
Multidimensional trie^ BANG file 1 6
Multidimensional directory? B S P tree ̂ ?
Log log n structure** Region quadtree ̂
Quintary tree9 EXCEL19

Field tree20
Quad-GIF tree21

iBentley 1975 9Lee and Wong 1980 ^Nievergelt et al. 1984
2Robinson 1981 10Ballard 16Freeston 1987
3Rothnie & Lozano 1974 1 Gunman 1984 ^Samet 1984
4Fagin et al. 1979 12Roussopoulos & Leifker 1985 ^Fuchs et al. 1980
5pinkel & Bentley 1974 1 ^Faloutsos et al. 1987 19Tamminen 1981
6Orenstein 1982 14Gunther 1986 20prank 1983
7Liou & Yao 1977 21Kedem 1982
Spries et al. 1987

A Taxonomy of Access Methods
A taxonomy of access methods would be useful to truly understand the
options available. Several writers have attempted to classify data access
schemes. Nievergelt et al. (1984) define two broad classes: a scheme can
organize the data themselves or partition the embedding space. For
example, the actual locations of objects in data space determine the
branching of k-d trees and R-trees. Conversely, a grid file or quadtree
subdivides when a predetermined sector of data space exceeds a
predetermined maximum capacity. The Nievergelt framework is quite
useful conceptually but enough hybrid schemes exist to make it something
less than a taxonomy. Specifically, the quad-CIF tree associates the
minimum bounding rectangles of its objects with cells of a recursively
subdivided embedding space (Noronha 1988). Other schemes that resist the
Nievergelt framework are the BANG file, cell tree, and extendible hashing.

Freeston (1987) defines a pragmatic classification of access schemes: tree
structures, extendible hashing, and grid files. But where the Nievergelt
framework is perhaps too conceptual, this classification is too technical.
The strengths and weaknesses of quadtrees and grid files, and those of
R-trees and BANG files, are more similar than those of quadtrees and
R-trees, or grid files and BANG files. Yet Freeston's classification results in
the latter two dissimilar groupings based on common data structuring
mechanics.

Noronha, too, defines a classification scheme for access methods (1988).
This scheme distinguishes hierarchical vs. nonhierarchical and regular vs.
object-oriented subclasses to highlight the major performance differences
among methods. However, Noronha's goal is description and exposition,
and he purposely avoids the rigor of a taxonomy.

195

The ideal taxonomy should produce clear distinctions between classes, and
members of a taxonomic class should share strengths and weaknesses. The
terminology used here departs from earlier conflicting, and potentially
confusing, usages. The "access methods" described here have been
variously termed "partitioning" (by Noronha), "indexing" (by Chrisman)
and "file structuring" (by the bulk of computer scientists). This taxonomy
distinguishes indexing from partitioning because these two operations are
associated with separable functions and ramifications. Membership in
more than one indexing class is permitted, but the partitioning class is
uniquely defined, since herein lies the greatest performance distinction.

Indexing. The two major indexing methods are search trees and
hashing. A search tree stores physical locations of entities according to
some order; hashing methods use functions to compute storage locations.
Topological navigation is a third indexing method that is somewhat
peculiar to geographic applications. If data records have an innate order
and supply pointers to neighbors, accesses within neighborhoods can use
these "topological" data as stepping-stones to navigate from from one
object to another. The DIME file editor (White 1974), the ETAK automobile
navigation system (White 1987), and the TIGRIS editor (Herring 1987)
demonstrate topological navigation in a spatial system. Lum et al. (1984)
demonstrate navigation in a temporal (and aspatial) RDB.

Partitioning. The most complex portion of the taxonomy describes
partitioning. The wide array of partitioning strategies and problems are
discussed at some length in both Chrisman 1988 and Noronha 1988.
Partitions can be at one level or hierarchical. Each can use regular or
irregular units. Irregular units can intersect or not within a level.
Successive levels of a regular hierarchy might nest fully or not. Figure 3
depicts the relationship of these subclasses.

Indexing: tree, hashing, navigation

Partitioning
' \

?in9'? Hierarchical Level

7
Irregular Units Regular Units Irregular Units Regular Units

Overlapping Nonoverlapping Overlapping Nonoverlapping Nested Unnested

Figure 3. A taxonomy of multidimensional access schemes, which provides separate
indicators for indexing and partitioning method.

196

Using the Taxonomy
The usefulness of the taxonomy is in evaluating a given access scheme for
a given purpose. Since an access scheme inherits the strengths and
weaknesses of its methodological components (as defined by the
taxonomy), we can quickly judge a scheme by knowing its classification.

For example, irregular subdivisions permit us to cluster data as desired and
thereby avoid splitting individual objects. Objects that are split by regular
cells can be difficult to reconstitute and may produce erroneous replies to
analytical queries concerning size or duration. Conversely, irregular cells
require more complex heuristics to build and greater storage overhead to
describe than do regular cells.

CONCLUSIONS
Four primitive queries whose ranges are zero-, one-, two-, and
three-dimensional lie at the root of more sophisticated requests for
temporal GIS information. A set of multidimensional data access schemes
exist that are theoretically capable of boosting temporal GIS performance.
These queries and access schemes are two endpoints from which to proceed
to untangle the temporal GIS problem that lies between them.

This paper presents a taxonomy that groups access methods according to
performance traits. Each subclass of the taxonomy is associated with a set of
strengths and weaknesses, which are inherited by its members. The
question, then, remains: what strengths would be most useful to a
temporal GIS application, and what weaknesses would be intolerable? The
cursory analysis described here indicates that using a topological navigator
to supplement a tree or hashed index would assist in time-slicing temporal
GIS data. How to partition spatiotemporal data is far more problematic
and requires further examination.

ACKNOWLEDGMENTS
I would like to thank Intergraph Corporation's Advanced Projects Group
for their generous support of this work. I would also like to thank Nick
Chrisman for many enthusiastic conversations on this topic.

REFERENCES
Ballard, Dana H. (1981). "Strip Trees: A Hierarchical Representation for

Curves." Comm ACM 24, May, 310-321.
Bentley, Jon Louis (1975). "Multidimensional Binary Search Trees Used for

Associative Searching." Comm ACM 18, September, 509-517.
Burton, Warren (1977). "Representation of Many-Sided Polygonal Lines

for Rapid Processing." Comm ACM 20, March, 166-171.
Chrisman, Nicholas R. (1988). "Spatial Indexing Schemes for GIS."

Unpublished paper, Dept of Geography, Univ of Washington, October.
Fagin, R.; Nievergelt, J.; Pippenger, N.; and Strong, R. (1979). "Extendible

Hashing: A Fast Access Method for Dynamic Files." ACM Transactions
on Database Systems 4,3,315-344.

Faloutsos, C; Sellis, T.; and Roussopoulos, N. (1987). "Analysis of Object-
Oriented Spatial Access Methods." Proceedings of SIGMOD '87, 426-429.

Finkel, R. A. and Bentley, J. L. (1974). "Quad Trees: A Data Structure for
Retrieval on Composite Keys." Acta Informatica 4,1-9.

197

Frank, A. (1983). "Storage Methods for Space-Related Data: The Field
Tree." Institut fur Geodasie und Photogrammetrie, ETH, Zurich, Nr 71.

Freeston, Michael (1987). "The BANG File: A New Kind of Grid File."
Proceedings of SIGMOD '87, 260-269.

Fries, O.; Mehlhorn, K.; Naher, S.; and Tsakalidis, A. (1987). "A log log n
Data Structure for Three-Sided Range Queries." Inf Proc Ltr 25, 269-273.

Fuchs, H.; Kedem, Z.; and Naylor, B. (1980). "On Visible Surface
Generation by A Priori Tree Structures." Computer Graphics 14, 3.

Gunther, Oliver (1986). "The Cell Tree: An Index for Geometric Data."
Electronic Research Lab, UCB/ERL M86/89. UC Berkeley, December.

Guttman, Antonin (1984). "R-Trees: A Dynamic Index Structure for
Spatial Searching." Proceedings of SIGMOD '84, 47-57.

Herring, John R. (1987). "TIGRIS: Topologically Integrated Geographic
Information System." Proceedings of Auto-Carto 8, 282-291.

Kedem, G. (1982). "The Quad-CIF tree: A Data Structure for Hierarchical
On-Line Algorithms." Proceedings, Design Automation Conference,
352-357.

Langran, Gail and Chrisman, Nicholas (1988). "A Framework for
Spatiotemporal Information." Cartographica 25, 3.

Langran, Gail (1988). "Temporal CIS Design Tradeoffs" Proceedings of
GIS/LIS '88 Volume 2, 890-899.

Liou, J. H. and Yao, S. B. (1977). "Multidimensional Clustering for Database
Organizations." Information Systems 2, 4,187-198.

Lee, D. T. and Wong, C. K. (1980). "Quintary Trees: A File Structure for
Multidimensional Database Systems." ACM Trans DB 5, 3, 339-353.

Lum, V.; Dadum, P.; et al. (1984). "Designing DBMS Support for the
Temporal Dimension." Proceedings of SIGMOD '84, 115-126.

Nievergelt, J.; Hinterberger, H.; and Sevcik, K. C. (1984). "The Grid File:
An Adaptable, Symmetric Multikey File Structure." ACM Trans DB 9,1.

Noronha, V. (1988). "A Survey of Hierarchical Partitioning Methods for
Vector Images." Proceedings of the International Symposium on Spatial
Data Handling, Sydney.

Orenstein, J. A. (1986). "Spatial Query Processing in an Object-Oriented
Database System." Proceedings of SIGMOD '86.

Robinson, J. T. (1981). "The K-D-B Tree: A Search Structure for Large
Multidimensional Dynamic Indexes." Proceedings of SIGMOD '81.

Rothnie, J. B. and Lozano, T. (1974). "Attribute-Based File Organization in
a Paged Environment." Comm ACM 17, 2, 63-69.

Roussopoulos, N. and Liefker, D. (1985). "Direct Spatial Search on Pictorial
Databases Using Packed R-Trees." Proceedings of SIGMOD '85,17-31.

Samet, H. (1983). "The Quadtree and Related Hierarchical Data Structures."
ACM Computing Surveys 16, 2, June.

Tamminen, M. (1981). "The EXCEL Method for Efficient Geometric Access
to Data." Acta Polytech. Scandinavia. Mathematics and Computer
Science Series, 34, Helsinki.

White, Marvin (1975). "Map Editing Using a Topological Access System."
Proceedings of Auto-Carto 2, 422-429.

White, Marvin (1987). "Digital Map Requirements of Vehicle Navigation."
Proceedings of Auto-Carto 8, 552-561.

198

