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ABSTRACT
This paper evaluates ways to boost the performance of spatiotemporal data 
access in a temporal GIS via strategic partitioning and indexing. Using a 
specific conceptual model as an example, the discussion describes a 
taxonomy of access methods and explores the methodogical options 
available.

INTRODUCTION
Effective access methods for spatiotemporal data are vital to the 
development of effective temporal geographic information systems. 
Because the access scheme of an atemporal GIS has major performance 
impacts, we can expect the spatiotemporal corollary to be similarly 
influential upon temporal GIS performance.

Although many alternate methods of representing temporal geographic 
data surely exist, this discussion builds upon a specific conceptual model 
that is described elsewhere in some detail (Langran and Chrisman 1988), 
and which was first suggested by Chrisman (1983). This model, called a 
space-time composite, represents spatiotemporality by accumulating 
geometric change into one integrated topological description. Each 
successive change causes the changed objects to break from parent objects, 
creating new objects with histories distinct from those of their neighbors. 
In other words, the representation decomposes over time into the area's 
greatest common spatiotemporal units; each unit's history is described by a 
variable-length list of attribute sets bracketed by effective dates.

Figure 1 shows a space-time composite of temporal census-tract data. 
Polygons 1, 2, 3, and 4 are the greatest common spatiotemporal units of 
Census Tracts A, B, and C. Until 1980, only three polygons represented the 
three census tracts because Polygon 3, being part of Tract B, was 
incorporated into Polygon 2. Then in 1980, the area represented by Polygon 
3 moved from Tract B to Tract C, creating a fourth polygon with a distinct 
history from its neighbors.

We can reconstruct any time slice from the space-time composite by 
referencing the attribute histories of its objects to find the attribute sets that 
were current on the requested date. This tack obviously works for small 
numbers of objects with shallow histories, but it is reasonable to ask 
whether the data processing burden is manageable given realistic 
geographic data volumes. Clearly, a complex query could swamp a system 
without an access scheme to boost performance.
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Census tracts: 1960 to 1980

population
1960 1970 1980

1960:TractA//
1960:TractB//
1960:Tract B / 1980:Tract C //
1960 Tract C//

Figure 1. Temporal census-tract data represented as a space-time composite. Polygons 
1, 2, 3, and 4 are the greatest common spatiotemporal units. Polygon 3 was part of 
Tract B until 1980, when it moved to Tract C. Census statistics such as population 
require no special treatment because time is symmetric with respect to other attributes.

QUERIES TO A TEMPORAUGIS
Table 1 lists potential queries to a temporal GIS. The listing distinguishes 
between forays into the past and future because the mechanisms for 
"examine" and "extrapolate" could differ depending on whether data are 
stored or computed.

Table 1. Temporal GIS queries.

Examine an object's history.
Extrapolate an object's future.
Examine a single time slice.
Examine an object's history; when the object meets some criteria, examine that time
slice.
Extrapolate an object's future; when the object meets some criteria, examine that time
slice.
Examine a single time slice; examine the histories of objects meeting some criteria.
Examine a single time slice; extrapolate the histories of objects meeting some criteria.
Examine the histories of all objects.
Extrapolate the futures of all objects.
Examine time slices, going backward through time.
Extrapolate time slices, going forward through time.

If we ignore extrapolated information and concentrate on accessing stored 
data, four primitive queries lie at the root of Table 1's eleven queries:

simple temporal query, i.e., what is the state of an object at time t? 
temporal range query, i.e., what happens to an object over a given period? 
simple spatiotemporal query, i.e., what is the state of a region at time t? 
spatiotemporal range query, i.e., what happens to a region over a given 
period?
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Access Mechanisms for Query Response
The space-time composite describes all temporality via time stamps in the 
attribute database, which permits us to treat time aspatially and space 
atemporally. Changes to geometric objects spawn new objects and break 
existing objects; these fragments replace the previous unbroken versions. 
By definition, each object in the space-time composite has a single 
geometric and topological description throughout time.

Thus, the temporal access mechanism for a space-time composite operates 
primarily on an attribute database, which is cross-referenced to the spatial 
representation. For the sake of simplicity, this discussion assumes that the 
attribute database is relational (here called an RDB) and that tuple versions 
correspond to object versions. Current RDBs can be fortified by a suite of 
indexing methods which, unfortunately, are almost solely one- 
dimensional (Freeston 1987). By stepping through the algorithms required 
to respond to the four primitive queries, we can comprehend how their 
requirements exceed standard RDB and GIS accessing capabilities.

Simple Temporal Query. The goal of the simple temporal query is to 
find an object version that was current on a specified date. Ideally, the 
system could search for the tuple whose "Object = ID" and "Time = T." But 
a temporal database is event-driven so a tuple will not necessarily have a 
time value to match every T. In essence, an object lifespan can be 
considered a chain whose nodes are the object's birth and death, and whose 
vertices are the points where the object changed. To time slice the object is 
to locate the value of a point along that chain based on the time stamp that 
equals or immediately precedes the requested time. This implies that 
ordering an object's versions within storage would be helpful.

Temporal Range Query. To respond to a temporal range query, the 
system must locate all versions of the desired object that were current 
during any part of the specified time span, i.e., where Object = ID, Time < 
Maximum Time, and Time > Minimum Time. The system could select all 
qualifying tuples; or if tuples are temporally ordered, the system could 
locate a tuple at one end of the desired time range then "walk" through 
time-sorted object versions until reaching the other end of the range.

Spatiotemporal Queries. The preceding two queries focus on single 
objects that meet temporal criteria. In contrast, spatiotemporal queries 
request all objects within specified spatial and temporal ranges. To respond 
to a simple spatiotemporal query, the system clips the desired region from 
the space-time composite, locates all attribute records for the desired region 
as of the desired time, then dissolves the chains that separate polygons of 
like attributes (i.e., recomposes the greatest common spatiotemporal units 
into greatest common spatial units). Alternately, the system can first access 
the required attribute records, then match them to the space-time 
composite. Responding to a spatiotemporal range query is the same as a 
simple spatiotemporal query except the system seeks attribute records 
falling within a space-time range.
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The Search Space of the Four Queries
While the data space of these four queries is three-dimensional (two space 
and one time dimension), a closer look reveals that the queries define 
ranges of zero, one, two, and three dimensions, respectively. Query One 
defines a degenerate range, the point in data space that describes an object's 
state at a given time (for example, the location of a tuple that references the 
attributes current at that time). The data that satisfy Query Two lie along a 
vector that traces the changes undergone by a specific object over a specific 
period~a one-dimensional range. The response to Query Three occupies 
an orthogonal plane a two-dimensional range. And the objectives of 
Query Four are located in a cube embedded within the GIS data space 
defined by a one-dimensional time range and a two-dimensional space 
range (Figure 2).

Figure 2. The search space of four primitive geographic queries in a three-dimensional 
data space, (a) A simple temporal query references a single point in space, (b) A 
temporal range query references a vector along which the desired data lie. (c) A simple 
spatiotemporal query references a plane within which the desired data lie. (d) A 
spatiotemporal range query references a cube within which the desired data lie.

RESPONDING TO TEMPORAL GIS QUERIES
Understanding the number of dimensions involved in a query is helpful 
in selecting the most effective means of response. Noronha (1988) and 
Chrisman (1988) provide recent discussions of multidimensional data 
access methods. Unfortunately, many methods that are termed "multi-" or 
"k-dimensional" can access only zero-dimensional ranges in a multi 
dimensional data space. While such methods hardly seem worthy of their 
name to those accustomed to working with multidimensional ranges in 
multidimensional space, their intent is to facilitate "composite key" or 
"multikey" retrievals. Such retrievals seek a subset of records in 
k-dimensional space, one dimension per attribute. Table 2, drawing on 
Noronha's discussion, lists methods designed to access data in a 
multidimensional data space according to the number of ranges each can 
treat.

Given the accessing options available for zero-, one-, and 
higher-dimensional ranges, the next step is to examine the methods that 
treat k-dimensional ranges in k-dimensional space (Table 2's third 
column), since these are the methods that potentially provide a single 
means of rapid response for the four primitive queries of a temporal GIS.
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Table 2. Accessing ranges of zero, one, and more dimensions in k-dimensional space.

Zero-dimensional One-dimensional K-dimensional
K-d tree * Strip tree 10 R-tree * * 
K-d-b tree2 R+ tree 12 
Multikey hashing3 Packed R-tree 13 
Extendible hashing4 Cell tree 14 
Point quadtree^ Grid file 1 5 
Multidimensional trie^ BANG file 1 6 
Multidimensional directory? B S P tree ̂  ? 
Log log n structure** Region quadtree ̂  
Quintary tree9 EXCEL19

Field tree20 
Quad-GIF tree21

iBentley 1975 9Lee and Wong 1980 ^Nievergelt et al. 1984
2Robinson 1981 10Ballard 16Freeston 1987
3Rothnie & Lozano 1974 1 Gunman 1984 ^Samet 1984
4Fagin et al. 1979 12Roussopoulos & Leifker 1985 ^Fuchs et al. 1980
5pinkel & Bentley 1974 1 ^Faloutsos et al. 1987 19Tamminen 1981
6Orenstein 1982 14Gunther 1986 20prank 1983
7Liou & Yao 1977 21Kedem 1982 
Spries et al. 1987

A Taxonomy of Access Methods
A taxonomy of access methods would be useful to truly understand the 
options available. Several writers have attempted to classify data access 
schemes. Nievergelt et al. (1984) define two broad classes: a scheme can 
organize the data themselves or partition the embedding space. For 
example, the actual locations of objects in data space determine the 
branching of k-d trees and R-trees. Conversely, a grid file or quadtree 
subdivides when a predetermined sector of data space exceeds a 
predetermined maximum capacity. The Nievergelt framework is quite 
useful conceptually but enough hybrid schemes exist to make it something 
less than a taxonomy. Specifically, the quad-CIF tree associates the 
minimum bounding rectangles of its objects with cells of a recursively 
subdivided embedding space (Noronha 1988). Other schemes that resist the 
Nievergelt framework are the BANG file, cell tree, and extendible hashing.

Freeston (1987) defines a pragmatic classification of access schemes: tree 
structures, extendible hashing, and grid files. But where the Nievergelt 
framework is perhaps too conceptual, this classification is too technical. 
The strengths and weaknesses of quadtrees and grid files, and those of 
R-trees and BANG files, are more similar than those of quadtrees and 
R-trees, or grid files and BANG files. Yet Freeston's classification results in 
the latter two dissimilar groupings based on common data structuring 
mechanics.

Noronha, too, defines a classification scheme for access methods (1988). 
This scheme distinguishes hierarchical vs. nonhierarchical and regular vs. 
object-oriented subclasses to highlight the major performance differences 
among methods. However, Noronha's goal is description and exposition, 
and he purposely avoids the rigor of a taxonomy.
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The ideal taxonomy should produce clear distinctions between classes, and 
members of a taxonomic class should share strengths and weaknesses. The 
terminology used here departs from earlier conflicting, and potentially 
confusing, usages. The "access methods" described here have been 
variously termed "partitioning" (by Noronha), "indexing" (by Chrisman) 
and "file structuring" (by the bulk of computer scientists). This taxonomy 
distinguishes indexing from partitioning because these two operations are 
associated with separable functions and ramifications. Membership in 
more than one indexing class is permitted, but the partitioning class is 
uniquely defined, since herein lies the greatest performance distinction.

Indexing. The two major indexing methods are search trees and 
hashing. A search tree stores physical locations of entities according to 
some order; hashing methods use functions to compute storage locations. 
Topological navigation is a third indexing method that is somewhat 
peculiar to geographic applications. If data records have an innate order 
and supply pointers to neighbors, accesses within neighborhoods can use 
these "topological" data as stepping-stones to navigate from from one 
object to another. The DIME file editor (White 1974), the ETAK automobile 
navigation system (White 1987), and the TIGRIS editor (Herring 1987) 
demonstrate topological navigation in a spatial system. Lum et al. (1984) 
demonstrate navigation in a temporal (and aspatial) RDB.

Partitioning. The most complex portion of the taxonomy describes 
partitioning. The wide array of partitioning strategies and problems are 
discussed at some length in both Chrisman 1988 and Noronha 1988. 
Partitions can be at one level or hierarchical. Each can use regular or 
irregular units. Irregular units can intersect or not within a level. 
Successive levels of a regular hierarchy might nest fully or not. Figure 3 
depicts the relationship of these subclasses.

Indexing: tree, hashing, navigation

Partitioning
' \

?in9'? Hierarchical Level

7
Irregular Units Regular Units Irregular Units Regular Units 

Overlapping Nonoverlapping Overlapping Nonoverlapping Nested Unnested

Figure 3. A taxonomy of multidimensional access schemes, which provides separate 
indicators for indexing and partitioning method.
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Using the Taxonomy
The usefulness of the taxonomy is in evaluating a given access scheme for 
a given purpose. Since an access scheme inherits the strengths and 
weaknesses of its methodological components (as defined by the 
taxonomy), we can quickly judge a scheme by knowing its classification.

For example, irregular subdivisions permit us to cluster data as desired and 
thereby avoid splitting individual objects. Objects that are split by regular 
cells can be difficult to reconstitute and may produce erroneous replies to 
analytical queries concerning size or duration. Conversely, irregular cells 
require more complex heuristics to build and greater storage overhead to 
describe than do regular cells.

CONCLUSIONS
Four primitive queries whose ranges are zero-, one-, two-, and 
three-dimensional lie at the root of more sophisticated requests for 
temporal GIS information. A set of multidimensional data access schemes 
exist that are theoretically capable of boosting temporal GIS performance. 
These queries and access schemes are two endpoints from which to proceed 
to untangle the temporal GIS problem that lies between them.

This paper presents a taxonomy that groups access methods according to 
performance traits. Each subclass of the taxonomy is associated with a set of 
strengths and weaknesses, which are inherited by its members. The 
question, then, remains: what strengths would be most useful to a 
temporal GIS application, and what weaknesses would be intolerable? The 
cursory analysis described here indicates that using a topological navigator 
to supplement a tree or hashed index would assist in time-slicing temporal 
GIS data. How to partition spatiotemporal data is far more problematic 
and requires further examination.
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