TABLE OF CONTENTS

Advanced Data Display

A Practical and Efficient Ap Stereoscopic Display and Mar Cartographic Objects, H. Moe	nipulation of	1
Visualization Techniques and GIS, R.A. McLaren, Know Edge		5
Two-Variable Color Mapping of C.B. Dawsey III, Auburn U.	on a Microcomputer	15
Data Bases - A Continuous Process		
Updating Urban Street Networ Resolution Satellite Imagery K. Yurach, and J. Seguin, St Environment Canada	, L. Li, G. Deecker,	21
Establishing a Corporate GIS Multiple GIS Project Data Se K.C. Siderelis, Land Resourc	ts, T.R. Johnson and	874
GIS Education and Training		
Education and Training in GI ESRI, T.Burns and J. Henders Research Institute, Inc.	S: The View from on, Environmental Systems	31
Geographic Information Syste J. Drummond, J-C. Muller, an	m Teaching at ITC d P. Stefanovic, ITC	38
GIS-Related Education and Tr H.J. Vogel, Siemens AG	aining at Siemens	47
Generalization		
Cartographic Generalization Environment: When and How t R.B. McMaster, The Analytic		56
Conceptual Basis for Geograp D.M. Mark, SUNY Buffalo	hic Line Generalization,	68
Data Compression and Critica Using Normalized Symmetric S Ferris State U.	l Points Detection cattered Matrix, K. Thapa,	78

Data Structures and Parallel Processing

	Transputer-Based Parallel Processing for GIS Analysis: Problems and Potentialities, R.G. Healey and G.B. Desa, U. of Edinburgh	90
	Uniform Grids: A Technique for Intersection Detection on Serial and Parallel Machines, W.R. Franklin, N. Chandrasekhar, M. Kankanhalli, D. Sun, M. Zhou, and P.Y.F. Wu, Rensselaer Polytechnic Institute	100
	A Geographic Data Model Based on HBDS Concepts: The IGN Cartographic Data Base Model, F. Salge and M.N. Sclafer, Institut Geographique National	110
	Demonstration of Ideas in Fully Automatic Line Matching of Overlapping Map Data, R.J. Hintz and M.Z. Zhao, U. of Maine	118
Data	Structures and Post-Processing for Digital Terrain	
	Topographic Grain Automated from Digital Elevation Models, R.J. Pike, W. Acevedo, and D.H. Card, USGS and NASA Ames	128
	A Spatial Low-Pass Filter Working for Triangular Irregular Network (TIN) and Restricted by Break Lines, ZT. Chen, Environmental Systems Research Institute, Inc.	138
	A Compact Terrain Model Based on Critical Topographic Features, L.L. Scarlatos, Grumman Data Systems	146
	A Shortest Path Method for Hierarchical Terrain Models, R. Barrera and J. Vazquez-Gomez, U. of Maine and UAM- Atzcapotzalco	156
Topi	cs in GIS and Automated Cartography	
	Hipparchus Data Structures: Points, Lines, and Regions in Spherical Voronoi Grid, H. Lukatela, Calgary	164
	Interactive Analytical Displays for Spatial Decision Support Systems, M.P. Armstrong and P. Lolonis, U. of Iowa	171
	Automated Insetting: An Expert Component Embedded in the Census Bureau's Map Production System, A.A. Martinez, Bureau of the Census	181
	Accessing Spatiotemporal Data in a Temporal GIS, G. Langran, U. of Washington	191

A GIS Curriculum for Universities Components of Model Curricula Development for GIS 199 in University Education, T.L. Nyerges, U. of Washington Automated Names Placement Automated Names Placement in a Non-Interactive Environment, L.R. Ebinger and A.M. Goulette, Bureau of the Census 205 An Expert System for Dense-Map Name Placement, J.S. Doerschler and H. Freeman, Hamilton Standard Division and Rutgers University 215 The Use of Artifical Intelligence in the Automated Placement of Cartographic Names, D.S. Johnson and U. Basoglu, Intergraph Corp. 225 Rule-Based Cartographic Name Placement with Prolog, C.B. Jones and A.C. Cook, Polytechnic of Wales 231 Digital Terrain The Development of Digital Slope-Aspect Displays, A.J. Kimerling and H. Moellering, Oregon State U. and Ohio State U. 241 Conversion of Contours, B. Shmutter and Y. Doytsher, Technion I.I.T. 245 Relative Errors Identified in USGS Gridded DEMs, J.R. Carter, U. of Tennessee 255 GIS Design: Examining the Alternatives The Architecture of ARC/INFO, S. Morehouse, Environmental Systems Research Institute, Inc. 266 Algorithms

The Combinatorial Complexity of Polygon Overlay, A. Saalfeld, Bureau of the Census	278
Pushbroom Algorithms for Calculating Distances in Raster Grids, J.R. Eastman, Clark U.	288
Spatial Adjacency - A General Approach, C.M. Gold, Memorial U.	298

Algorithms

	Multiscale Data Models for Spatial Analysis, with Applications to Multifractal Phenomena, L. DeCola, U. of Vermont	313
Three	e-dimensional GIS	
	Three-Dimensional GIS for the Earth Sciences, D.R. Smith and A.R. Paradis, Dynamic Graphics, Inc.	324
	National Capital Urban Planning Project: Development of a Three-Dimensional GIS Model, L.G. Batten, USGS	336
	GIS Future: Automated Cartography or Georelational Solid Modeling?, H. Lukatela, Calgary	341
Data	Capture Techniques	
	Spectral/Spatial Exploitation of Digital Raster Graphic Map Products for Improved Data Extraction, T.J. Eveleigh and K.D. Potter, Autometric Inc.	348
	Cartographic Data Capture Using CAD, M.E. Hodgson, M.L. Barrett, and R.W. Plews, U. of Colorado and Hunter College, CUNY	357
	Tigris Mapper Viewed as a Digital Data Capturing Tool in Object Oriented Environment, J. Mitter, Intergraph Corp.	367
	Data Capture for the Nineties: VTRAK, R. Waters, D. Meader, and G. Reinecke, Laser-Scan Laboratories	377
Envi	ronmental Applications of GIS	
	Polygon Overlay to Support Point Sample Mapping: The National Resources Inventory, D. White, K. Chan, M. Maizel, and J. Corson-Rikert, NSI Technology Support Corp.	384
	Hazardous Waste Disposal Site Selection Using Interactive GIS Technology, C. Van Zee and J.E. Lee, Ebasco Services and QC Data Collectors, Inc.	391
	Testing Large-Scale Digital Line Graphs and Digital Elevation Models in a Geographic Information System, D.R. Wolf and E.T. Slonecker, USGS and Bionetics Corp.	397

Data	Structures and Spatial Query Techniques	
	Quadtree Meshes, W.T. Verts and F.S. Hill, Jr., U. of Massachusetts	406
	Storage Methods for Fast Access to Large Cartographic Data Collections - An Empirical Study, A. Kleiner, U. of Zurich	416
	Solving Spatial Queries by Relational Algebra, R. Laurini and F. Milleret, INSA-Lyon	426
Stru	cturing Large Spatial Data Bases	
	Speculations on Seamless, Scaleless, Cartographic Data Bases, S.C. Guptill, USGS	436
	Optimal Tiling for Large Cartographic Databases, M.F. Goodchild, UC Santa Barbara	444
	The Geographic Database - Logically Continuous and Physically Discrete, P. Aronson, Environmental Systems Research Institute, Inc.	452
	Planetary Modeling via Hierarchical Tessellation, G. Dutton, Prime Computer	462
GIS A	Applications	
	Use of the 1:2,000,000 Digital Line Graph Data in Emergency Response, H. Walker, Lawrence Livermore National Laboratory	472
	Use of a Geographic Information System to Evaluate the Potential for Damage from Subsidence of Underground Mines in Illinois, C.A. Hindman and C.G. Treworgy, Illinois State Geological Survey	483
Inter	rnational Perspectives	
	Digital Data: The Future for Ordnance Survey, M. Sowton, Ordnance Survey, UK	493
	GIS, AM/FM, and Automated Cartography in Japan, S. Kubo, Ochanomizu U.	505
	Trends of Computer-Assisted Cartography in Hungary and Eastern Europe, P. Divenyi, Institute of Geodesy, Cartography, and Remote Sensing	513

Quality Control Issues Error in Categorical Maps: Testing versus Simulation, N.R. Chrisman, U. of Washington 521 Modeling Error for Remotely Sensed Data Input to GIS, M.F. Goodchild and M. Wang, U. of Western Ontario and U.C. at Santa Barbara 530 Spatial Relations and Data Base Models Concepts of Space and Spatial Language, D.M. Mark and A.U. Frank, SUNY Buffalo and U. of Maine 538 Geographic Information: Aspects of Phenomenology and Cognition, R.J. Williams, Australian Defence Force Academy 557 GIS Support for Micro-Macro Spatial Modeling, T.L. Nyerges, U. of Washington 567 Context-Free Recursive-Descent Parsing of Location-Descriptive Text, M. McGranaghan, U. of Hawaii 580 Object-Oriented Approaches to GIS Object-Oriented Modeling in GIS: Inheritance and Propagation, M.J. Egenhofer and A.U. Frank, U. of Maine 588 Geographic Logical Database Model Requirements. M. Feuchtwanger, U. of Calgary 599 Educational Tools for GIS GIST: An Object-oriented Approach to a Geographical Information System Tutor, J.F. Raper and N.P.A. Green, Birkbeck College 610 DEMOGIS Mark 1: An ERDAS-Based GIS Tutor, D.J. Maguire, University of Leicester 620 Poster Session Cartographic Analysis of U.S. Topography from Digital Data, R.J. Pike and G.P. Thelin, USGS 631 A Full Function GIS Editor, W.H. Moreland, Environmental Systems Research Institute, Inc. 641

Poster Session

	A Study of Spatial Data Management and Analysis Systems, C. Christopher and R. Galle, Jackson State U. and Stennis Space Center	648
	Sliding Tolerance 3-D Point Reduction for Globograms, S. Prashker, Carleton U.	655
	A Reactive Data Structure for Geographic Information Systems, P. van Oosterom, U. of Leiden	665
Cha1	lenges for the Future	
	Challenges Ahead for the Mapping Profession, J.C. Muller, ITC	675
	An On-line, Secure and Infinitely Flexible Data Base System for the National Population Census, D.W. Rhind, E. Hayes-Hall, H.M. Mounsey, and S. Openshaw, Birkbeck College and The University of Newcastle	684
Auto	mated Mapping Applications	
	A Cartographic Extract of the TIGER File: Implications for Mapping Applications, A. Bishton, Bureau of the Census	697
	A Versatile Mapping System for the USGS 1:100,000 DLGs, D.J. Cowen and T.R. White, U. of South Carolina	705
	New York State's Digital County Mapping Program, T.W. Koch, NY DOT	715
	Vector-Based Computer Graphics in Automated Map Compilation, C.F. Scheepers, CACDS	724
Stan	dards and Their Use	
	First UNIX, then UGIX, D.W. Rhind, J.F. Raper, and N.P.A. Green, Birkbeck College	735
	The South African Standard for the Exchange of Digital Geo-Referenced Information, A.K. Cooper, CACDS	745
	The Telecommunication of Map and Chart Data, T. Evangalatos, Z. Jiwani, D. McKellar, and C.D. O'Brien, Canadian Hydrographic Service, OMNR, DND, IDON Corp.	754

GIS: Directions for the Future

The ESRC's Regional Research Laboratories: An Alternative Approach to the NCGIA?, J.W. Shepherd, I. Masser, M. Blakemore, and D.W. Rhind, Birkbeck College, U. of Sheffield, and U. of Durham	764	
The Institutional Context of GIS: A Model for Development, P.F. Fisher and M.N. DeMers, Kent State U. and Ohio State U.	775	
GIS Performance		
The Power of Symbology in the GIS World, M.E. Gentles, Synercom Technology, Inc.	781	
On the Design of Geographic Information System Procedures, J.A. Guevara, Environmental Systems Research Institute, Inc.	789	
Performance Testing of Gridcell-Based GIS, S.E. Amundson, U. of Hawaii at Hilo	798	
Use Error: The Neglected Error Component, K. Beard, U. of Maine	808	
System Design, Integration, and Application		
Extending Entity/Relationship Formalism for Spatial Information Systems, Y. Bedard and F. Paquette, Laval U.	818	
A Fully Integrated Geographic Information System, J.R. Herring, Intergraph Corp.	828	
AM/FM and GIS		
Spatial Tools for the Administration of Major Institutions, J.M. Young, Program Administration Group	838	
Displays for Spatial Data		
Incorporating the Laborde Projection into an Existing Cartographic Software Package, P.H. Laskowski, Intergraph Corp.	850	
<pre>IBM PC Animation - Crude but Effective, W.T. Verts, U. of Massachusetts</pre>	858	
CAD: A Viable Alternative for Limited Cartographic and GIS Applications, R.C. Anderson and L.D. Carmack, Jr. U.S. Military Academy	867	