
HIPPARCHUS DATA STRUCTURES: 
POINTS, LINES AND REGIONS IN SPHERICAL VORONOI GRID

Hrvoje Lukatela
2320 Oxbridge Drive, Calgary, AB T2N 3Z6 CANADA 

(Envoy 100: lukatela)

ABSTRACT

Hipparchus geo-spatial manager (cf. Auto-Car to/8 introduction paper) 
is an operational software package that provides geometronical and 
geo-relational functions to applications that manipulate spatial 
objects. It is capable of geodetic precision levels, and fully honors 
the isometric, spheroidal nature of the terrestrial surface and orbit 
data-space. A Voronoi tessellation is used as a base for its domain 
partitioning grid. This paper outlines data structures used to 
represent 0, 1 and 2 dimensional surface objects: sets consisting of 
discrete points and lines, and non-simply connected regions.

The paper also discusses general characteristics of a family of 
computational geometry algorithms which evaluate spatial unions and 
intersections by operating simultaneously on the digital model of the 
spheroidal Voronoi grid and on the object structures.

Hipparchus Geopositioning Model: An Example of Voronoi Cell Grid

INTRODUCTION

Point, line and region sets represent the most common classes of 
spatial objects that a geographically-oriented application system 
must be capable of manipulating in a meaningful way. While the full 
nature of such manipulations depends on the domain and purpose of the

164



application itself, spatial unions and intersections represent their 
reoccurring "building-blocks". It is therefore desirable to provide 
this functionality in a packaged form, in order to avoid re-
-programming of identical procedures in many different development 
projects. This is one of the functions of the Hipparchus software 
package, (cf. Auto-Car to/8: Hipparchus Geopositioning Model: an 
Overview, same author. Understanding of the model elements described 
therein is assumed.) This paper details basic data structures and 
computational methodology used in this particular functional segment 
of the package. The implementation follows true ellipsoidal frame of 
reference; to simplify this presentation, structures will be 
considered only in their spherical form.

Certain principles apply to all three object classes. Each class 
represents, conceptually, a pertinently dimensional set of surface 
points. Each set can consist of a finite number of simple component-
-sets of the same dimension. (Component-sets are "fragments" of the 
set in the strict sense of its spatial extent; all non-spatial 
characteristics describe the whole set or object, none can be 
specific to a particular component-set.) Since an object modeled by 
the system can loose completely its spatial extent, the system must 
not only recognize empty sets, but also be able to use them in union 
and intersection productions. One and two dimensional sets are 
numerically represented by finite, ordered sets of vertices, 
conceptually connected with great circle segments.

All three spatial object classes are commonly used and exchanged by 
various systems that build and use digital models of geographically 
distributed data. Assuming that point locations are defined in a 
coordinate system - appropriate to the particular reference surface - 
"neutral" form of numerical object representation is usually 
constructed as a set of ordered point coordinates, with component-
-sets delineated by a "not-a-coordinate" token. Two consecutive 
tokens signify absence of further component-sets, i.e. end of point 
data representing the object. A data-item following the last token 
identifies the object. Since component-sets of a point set are single 
point coordinates, its "neutral" representation can be (and commonly 
is) simplified by discarding the component-set delineation tokens, 
and terminating the whole set with a single token.

If different point coordinates are represented by Pta, Ptb, Ptc, 
etc., delineation tokens by *, and if a quote-string data-item is 
used to identify the object, examples of "neutral" representation of 
point, line and region objects could be:

Point set:
Pta Ptb Ptc Ptd Pte Ptf Ptg Pth pti Ptj * "letter boxes"

Line set:
Pta Ptb Ptc * Ptd Pte * Ptf Ptg Pth Pti * Ptj Ptk * * "snow fences"

Non-simply connected region:
Pta Ptb Ptc Ptd Pte Ptf Ptg Pth * Pti Ptk Ptj Pti * * "Crater Lake"

SPHERICAL VORONOI GRID AND COMMON DATA ITEMS AND STRUCTURES

In addition to the spherical or spheroidal reference surface, 
Hipparchus spatial index - dual of the Voronoi polygon grid - forms 
another dominant spatial feature of the system. Ordered polygons

165



represent a series of identifiable "data-cells". Each surface point 
belongs to one - and only one - cell. (Points on the edge belong, by 
convention, to a cell with a lower number.) No restrictions are 
placed on the relative position of objects and the cell grid: an 
object can be contained completely inside a single cell, or extend 
over any number of cells. Consecutive vertices on a line can belong 
to the same cell, to two neighbour cells, or to two cells which are 
not neighbors. Linear segment connecting two consecutive points can 
pass through any number of cells.

Only three abstract data types - in addition to the object identifier 
- are used in object representation: cell ordinal number, local point 
coordinate pair and cell-boundary intersection coordinate. (Their 
mapping into data types intrinsic to a particular computer 
environment can vary from implementation to implementation). In 
addition, Hipparchus structures include (unsigned) count of elements 
in various (ordered) lists and (aggregate) clusters, and locators of 
their subordinate lists or clusters. (Locators are the only elements 
which need conversion as the objects are moved from memory to 
external storage and back.) Implementation specific mechanism exists 
for manipulation of cell identifier lists, in order to save space 
and speed up list search algorithms.

Object structures are designed with two - often diverging - 
objectives in mind: efficiency of transformation between neutral, 
external and internal object representation and efficiency of 
evaluation of spatial unions and intersections.

Several structures are used as building-blocks in the representation 
of spatial objects:

Occupied cell descriptor: Structure describing a cell which contains 
one or more aggregate (non-ordered) points that belong to the object. 
The structure consists of:

Cell identifier
Local coordinate cluster length
Local coordinate cluster locator

Line descriptor: Structure describing a line that forms either one 
among the components of a line set, or one among the boundary rings 
in a non-simply connected region. The structure consists of: 

Traversed cell descriptor list length 
Traversed cell descriptor list locator

Traversed cell descriptor: Structure describing either that section 
of a line or the boundary ring that is inside one cell, or the 
complete line/ring contained in a single cell. The structure consists 
of:

Cell identifier
Local coordinate list length
Local coordinate list locator
Cell boundary intersection coordinate

In the case where this structure portrays only a section of the 
line or ring, boundary intersection coordinate defines the point 
where the line leaves the cell. This item will be void if the whole 
line or boundary ring is inside a single cell, and, likewise, in the 
last cell of a line. In the case of single cell boundary ring, 
coordinate list attached to this structure is circular by definition, 
the start vertex point is not repeated at the end of the list.

166



POINT SET

Point set object descriptor: Structure defining a point set object 
and describing its spatial extent. The structure consists of: 

Object identifier
Occupied cell descriptor list length 
Occupied cell descriptor list locator

Objects that by definition never exceed single point location (i.e, 
simple point objects) can be represented by a much simpler, self- 
-contained structure:

Object identifier
Cell identifier
Local point coordinate pair

Since single point component-sets represent parts of the spatial 
extent of the same object, no two of them must be closer than the 
minimum spatial resolution that the system is capable of 
representing.

167



LINE SET

Line set object descriptor: Structure defining a line set object and 
describing its spatial extent. The structure consists of:

Object identifier
Traversed cell identifier list
Line descriptor cluster length
Line descriptor cluster locator

Consecutive vertices on the line must not coincide. The package 
provides the mechanism for the detection of coincident non- 
consecutive vertices, as well as intersection of linear segments. 
Such conditions are acceptable; any rules to the contrary must be 
defined within, and enforced by, the application. As mentioned above, 
a single segment can span many cells. Traversed cell may, in such 
case, contain no vertex; a single line fragment in it will be defined 
by the cell boundary intersection coordinate of two consecutive 
traversed cell descriptors.

Boundary intersection coordinate is a linear measure. Unlike vertices 
- which exist in "neutral" representation, and are hence intrinsic to 
the object - intersection is an artifact of the internal 
representation. The implementation therefore ensures that the 
intersection is numerically encoded with greater spatial resolution 
than that of the vertex.

168



REGION

Region object descriptor: Structure defining a non-simply connected 
region object and describing its spatial extent. The structure 
consists of:

Object identifier
Traversed cell identifier list
Interior cell identifier list
Line descriptor cluster length
Line descriptor cluster locator

Consecutive vertices must not coincide, the line must not cross 
itself, and the cell boundary intersection coordinate is treated as 
explained previously. Boundary ring direction is significant: by a 
common convention, interior is on the left-hand side.

The structure is capable of representing non-simply connected regions 
of any width (parallel "islands") or depth ("lake-island-lake..."). 
The package provides the width- and depth-unrestricted mechanism for 
the detection of inconsistencies in the ring direction.

While the manipulation of non-simply connected regions increases 
significantly the complexity of many algorithms employed by the 
package, this is an indispensable feature: either the union or the 
intersection of two simply-connected regions will, in general case, 
be a non-simply connected set. An application lacking this feature 
(i.e. an application restricted to simply-connected regions) would 
therefore be unable to treat a result of some of the two-dimensional 
unions or intersections in the same way as either of the production 
constituents. This might not be a major problem for applications that 
produce only graphical displays of such productions, but can weaken 
significantly those applications that create new spatial objects by 
applying a combination of spatial and non-spatial operators to the 
objects existing on their data bases.

169



SPATIAL UNION AND INTERSECTION ALGORITHMS

The critical feature of all union and intersection algorithms in the 
Hipparchus package is their ability to avoid the spheroidal 
computational geometry in all instances where the spatial 
relationships can be resolved by simple comparison of cell identifier 
lists. As mentioned above, such lists are encoded in a form which 
exploits the sequences of cell numbers. (Strategic cell number 
clustering provides therefore an additional mechanism by which the 
application can improve the efficiency of the package.)

Once the problem requires that the computational geometry be 
performed, the algorithm will isolate cell or cells to which the 
solution is restricted. If no proximity criterion is involved - i.e. 
in case of unions and intersections between union-compatible sets - 
those cells will always represent the intersection of lists of 
traversed cells of two constituents. If the production involves a 
proximity criterion, the minimum and maximum cell-vertex distances in 
a pair of cells is used to reject from the geometry processing those 
sections of the object which either can not form part of the 
solution, or which are known to be part of the solution and can be 
mapped directly into the output set.

Since, in general case, a cell can contain fractions of more than one 
component-set, all geometry result elements must be stacked up, and 
the complete list must be traversed in order to properly connect new 
line or boundary ring segments. Such traverses are also restricted to 
the elements occurring within one cell.

Two-dimensional union and intersection algorithms must recognize 
coincident linear segments, in order to detect collapsing boundaries 
of two-dimensional objects. Where the complete boundary of both two- 
dimensional object collapses, the algorithm must be capable of 
determining whether the resulting object covers the whole domain, or 
whether is has no spatial coverage at all.

Line component-sets are obviously aggregate, but the boundary rings 
in a non-simply connected region could be ordered (width- or depth-
-first), according to their position in the component-set hierarchy. 
It is interesting that such ordering contributes nothing toward the 
simplification of union and intersection algorithms, and presents the 
problem of developing a reasonable convention which defines highest-
-order component-set on the spheroidal surface. Consequently, boundary 
rings in the Hipparchus structures are considered to be aggregate.

Finally, all computational geometry in Hipparchus package is 
performed using global coordinates. This avoids completely the 
problem of possible topology discrepancies between the spheroid and 
the projection plane; consequently, the design is free from any 
restrictions on the maximum length of the segment between consecutive 
vertices. Direction cosine form of the global coordinates provides 
for computational geometry algorithms based on vector algebra; such 
algorithms are both easier to program and simpler to test than the 
algorithms based on the conventional spherical latitude/longitude 
coordinates.

170




