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ABSTRACT

A modular method for incorporating the Laborde projection 
into an existing cartographic software packaxge, which 
requires the minimum amount of extra coding, is 
described. The method exploits the? natural modularity in 
the definition of the Laborde conformal projection and 
utilizes the existing transformations likely to be found 
in any standard software library of map projections. The 
few missing formulas that would be necessary to complete 
the Laborde mapping equations <but are hard to find in 
the literature - such as the scale factor equation) are 
provided. Also, in case the suitable conformal latitude 
routines are not available, an alternative approach 
(using Mercator equations) to the transformation from 
ellipsoid to sphere is proposed.

INTRODUCTION

Cartographic projections enable the representation of the 
curved surface of the ellipsoidal (or spherical) Earth 
onto the flat surface of the map. Some projections are 
used more often than others, mainly based on their 
usefulness, but also based on the traditionally 
established standards. Lambert Conic Conformal and 
Transverse Mercator projections became standards for 
large scale mapping. These projections are always easy 
to find in any standard cartographic software package.

Some other projections are almost extinct from today's 
cartogr t*phic practice, often because they were not 
useful, but sometimes because they never gained enough 
attention. The Laborde conformal projection, used for 
Madagascar Grid, is a good example of a projection with 
the single implementations for Madagascar only. This 
projection is not likely to be found in a standard 
cartographic software package, partly because the 
computer ready projection equations are not likely to be 
found in any modern cartographic textbook! Yet the 
projection has all the desired geometric properties of 
the Oblique Mercator projection, without being so 
undesirably sensitive to the small changes in the 
defining azimuth of the central line, as is the well 
known Hotine's version of the Oblique Mercator projection 
(compare Hotine 1947). In many respects, the Laborde 
approach produces equations that are more numerically
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stable than the usual Oblique Mercator's equations.

The cartographer who wants to include the Laborde 
projection into his cartographic: software package has to 
cope with the old-f ashioned, o-ften tabular descriptions 
(mainly in French and German) of the Bauss-Schreiber 
projection, a projection similar but not identical to the 
Transverse Mercator projection.

This paper describes the alternative approach, in which 
the Laborde projection equations are constructed from the 
separate functional modules, likely available in any 
standard cartographic software library. This approach 
utilises the intrinsic modularity in the original 
definition of the projection, and minimizes the oimount of 
new computer code required.

DEFINITION OF LABORDE PROJECTION

The l.aborde conformal projection was formulated by 
Commander J. Laborde (1928) as a triple project!on, 
designed for Madagascar, an island elongated in a 
direction which is at an angle to the meridian and to the 
parallel. The properties of the projection are controlled 
by a set of projection parameters, in a manner similar to 
the well known Oblique Mercator projection (Hotine 1947): 
latO - the latitude of origin

<--18°54' for Madagascar) 
lonO - the longitude of origin

(46a26'13.95" for Madagascar) 
A2 - the azimuth of the axis of strength

U8°54' for Madagascar) 
kc, - the1 scale reduction factor at origin

(0.9995 for Madagascar) 
FE - False Easting

(400000m for Madagascar) 
FN - False Northing

(800000m for Madagascar)

Despite the fact that both, Laborde's and Hotine's 
projections have a similar set of defining parameters, 
conceptually they have been constructed in a different 
manner. The Laborde version uses the conformal sphere as 
an intermediate surface, whereas the Hotine's version 
uses a special geometric form called aposphere as an 
intermediate surface.

Computationally, the obliquity of the Laborde projection 
is controlled by the azimuth at the projection origin, 
normally at the center of the map, whereas the Hotine's 
equations indirectly use the azimuth at the equator of 
aposphere, positioned usually thousands of miles away 
from the mapped area. As a result, the Laborde equations 
are numerically more stable with respect to the small 
variation in the defining azimuth than the Hotine's 
equations are. Also, Laborde's equations are well defined 
for azimuth angles close or equal to 0° or 90°, whereas 
Hotine's equations are not.
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As a triple projection, the Laborde equations can be 
decomposed into three? separate conformal projections:
1. ellipsoid to sphere, according to Gauss representation 
of the second kind <Gauss 1844)
2. sphere to plane, using the spherical Transverse 
Mercator equations
3. plane to plane, according to the Laborde complex 
third degree polynomial (Laborde 1928).

The -first step de-fines the intermediate surface of the 
conformal sphere. The radius of the sphere is the 
Baussian Mean Radius of Curvature calculattsd at the 
projection origin. The latitude of the projection origin 
is maintained true to scale (standard parallel), and the 
scale differs very little from unity in a wide zone 
surrounding the1 standard parallel <by design the scale 
error is maintained close to zero as the quantity of the 
third order with respect to the angular distance from 
the standard parallel).

Although the? second step alone, the Transverse Mercator 
projection, does not require any explanation, it is an 
interesting fact that the first step and second together 
produce the Gauss-Schreiber projection of the ellipsoid 
to the plane, which differs slightly from the ellipsoidal 
Transverse Mercator projection, in that the central 
meridian is not quite true to scale.

The third step is the conformal transformation from t.he 
intermediate plane of the Gauss-Schreiber projection to 
the final plane of the Laborde projection, designed to 
reduce the scale error along the chosen oblique axis at 
the expense of losing an "almost true to scale" meridian 
generated by the Gauss_Schreiber projection. This is 
achieved through the (complex) polynomial transformation 
of the plane, rather than through an ordinary planar 
rotati on.

IMPLEMENTATION STEPS

In this section the software implementation steps for the 
Laborde projection will be outlined. Only the equations 
not likely to be found in a standard cartographic 
software library will be given. These few equations would 
have to be coded in the form of subroutines and added to 
an existing software library. The final code for the 
Laborde projection should then be composed of successive 
calls to the existing routines, precisely in the order 
implied by the original definition of the projection.

Step 1. Ellipsoid to sphere

The implementation of this step depends on the 
availability of the appropriate conformal latitude and 
longitude subroutine. There are (infinitely) many ways 
to conformally project ellipsoid to sphere. The Laborde 
projection specifically requires the application of the 
Gauss equations of the second kind (Gauss 1844). However,
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the most commonly known con-formal latitude equations are 
those used in Adams (1921, p. 18,84), discovered by 
L.agrangr? in 1779. The Lagrange? representation di-f-fers 
from the Gauss representation of the second kind in that 
it produces bigger scale errors as the angular distance 
from the standard parallel increases. Therefore, the 
Lagrange representation ccannot be used for the Laborde 
projecti on.

Concluding this step, if the conformal latitude and 
longitude subroutine which uses precisely the Gauss 
representation of the second kind is available - it 
should be used to transform the ellipsoid to the 
conformal sphere.

Otherwise, the computations in this step may be 
accomplished, in three separate stages, by the following 
procedure (which follows directly from the Gauss original! 
definition, and algorithmica]ly utilises the ordinary 
Mercator projection equations):

1. The conformal transformation of latitude and longitude 
(1 at, Ion) on the ellipsoid to the isometric plane (x,y) 
may be accomplished by using the forward equations of the 
c-'l J ipsoi dal Mercator projection. The parameters to the 
Mercator subroutine should specify the eccentricity e, 
the unit. equatorial radius a~l , the (Mercator) origin 
(I at~0 ,1 orv~l onO) , and the equator true to scale.

In the formulas below, the latitude and longitude 
coordinates on the ellipsoid are denoted by (lat,lon), 
the re'->pDC t i VP latitude and longitude coordinates on the 
conformal sphere are (LAT,LON), the ultimate origin point 
of the Laborde projection on the? ellipsoid is at 
<latO,lonC>), and the respective origin on the conformal 
sphere is (LATO,LONO>.

?,. The conformal transformation of the (ellipsoidal) 
isomcihric plane <::,y) to the (spherical > isometric plane 
(X,Y) is accomplished by the? Gau<r-<=> linear equations 
(Gauss 1844)5

X - c -x ;;
Y = c * (y H- dy) (1)

where the scale and shift parameters should be 
preeal cul at od as the 1 projection constants:

c = Ct t- <e=* coa*(laLO)) / U-ea > 3*' = (2) 

dy - YO / c -- yO , (3)

where the isometric: latitudes yO and YO in equation (3) 
may again be evaluated using Mercator projection 
equations.

The ellipsoidal isometric latitude yO is computed as the 
Northing value obtained by applying the forward equations 
of the ellipsoidal Mercator projection to the Laborde
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origin (1 atO, 1 onO) . The parameters to the Merr.at.or 
subroutine should specify the eccentricity e, the unit 
equatorial radius a=l , the (Merc: at or) origin 
< lat~-0, lon = lonO) , and the equator true to scale.

The spherical isometric latitude YO, needed in equation 
(3), is computed as the Northing value obtained by 
applying the -forward equations of the spherical Mercator 
projection to the origin point on sphere (LATO,LONO), 
where-1 , from Gauss conditions, LATO should be computed as

I.ATO = arcsin(sin(latO)/c> , (4)

and LONO = <.>„ The parameters to the Merc£*tor subroutine 
should specify the eccentricity e--0 (for sphere), the 
unit radius a~-i , the (Mercator) origin (LAT-0,LON--0> , 
and the equator true to scale.

3. The con-formal transformation of the (spherical) 
isometric plane (X,Y) to the resultant latitude and 
longitude (I.AT, LOW) on the con formal Dphert1 ni£xy be 
accomplished by using the inverse equations of the 
r>pheric£*l Mercator projection. The parameters to the 
Mercator subroutine should specify the eccentricity e?~0 
(for sphere), the unit radius a-1, the (Mercator) 
origin <LAr=0,I.ON=0) , and the equator true to scale.

After the above steps, the resultant (LAT, LOIM) 
coordinates refer to the conformal sphere, precisely as 
implied by the? Gauss represent.at i on of the second kind 
(Gauss 1844).

Step 2» Sphere to Gaiiss-SchreJ ber plane

For this step the spherical Transverse Mercator equations 
are appropriate. The parameters to the Transverse 
Mercator subroutine should specify the radius R which is 
equal to the Gauss mean radius K0 associated with the 
conformal sphere, and evaluated at the latitude of 
origin, latO:

Ro - a (1 - e'-2 ) 1 '' 2 / ( 1 - e= sin'-'- (1 atO) ) . (5)

Other parameters should specify the eccentricity e=O (for 
spherical equations), the (Transverse Mercator) origin 
LAT-LATO (given by equation (4)), LQN~0, and the scale 
reduction factor at the origin k0"l •

The resultant coordinates on this intermediate plane are 
precisely the Gauss—Schreiber coordinates of a (double) 
projection of the ellipsoid on the plane, similar (but 
not identical) to the ellipsoidal Transverse Mercator 
projection.

St.ej_>__3.__6auSB---SchrM e;i. ber, pi ane ...tc»._.La.bur..de pi ane

This step should be programmed in the form of a
subroutine implementing Laborde's conformal polynomial
equations. These equations will be given here in the
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order of calculations.

Given the azimuth An of the axis of strength (equivalent 
to the central line in the Oblique Mercahor projection), 
evaluate the? projection constants A and B;

A ~ (1 - cos (2 A?.)) / (12 Ro^2 ) (6) 
B ~ sin(2 As) / (12 R03 ). (7)

Then, for any given Gauss-Schreiber coordinates (;;,y), 
the mapping equations, which produce the Labor dp 
coordinates (X,Y), are

X =• x + A fl + B f2 (B) 
Y •= y - B fl + A F2 (9)

wher e

fl = -- X s5 + 3xy= (10) 
f2 - - 3x 2y + y= - (11)

Of course, as in any mapping equations, the final X,Y 
coordinates may be (uniformly) scaled down by the central 
scale reduction factor k0 <k 0«.0.9995 for Madagascar), and 
the appropriate False Easting, False Northing may be 
added for the.? positive coordinates range.

iff!proving numerical stabi1i ty

The large numbers that could be possibly generated in 
equations (10) and (11) may be easily avoided by the 
fol1 owing modi fi cat i oris;

a) in Step 2, the call to the yphoric.al Transverse 
Mercator equations should specify the radius parameter R 
equal to 1 instead to R0 of equation <5),

b) in Step 3, the Laborde constants A and B (equations 
<6) (7) ) should he evaluated using Ro~-"3 -, and the 
resultant Laborde coordinates of equations (8)(9) should 
he post-multiplied by the* actual Ro. as properly 
determined in <5).

NOTE ON INVERSE EQUATIONS AND DCAL F FACTOR COMPUTATION

The inverse mapping equations for the Laborde projection 
should be implemented by using the respective- inverse 
equations for steps 3, 2, and 1 of the forward 
procedure. Again the assumption is that the inverse 
equations of the (spherical) Transverse Mercator 
projection and the Merry tor i river se projection equations 
are available, and should be used in steps 2 and 1 
(whenever applicable). The remaining steps require some 
additional explanation.

Beginning the inverse process with Step 3, the inverse? nf 
the Laborde conformal polynomial equations (3)(9) is 
accomplished by numerically solving for the unknown 
Gauss-Schreiber coordinates (x,y), using the given
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Laborde coordinates (X,Y) as constants, -from the system 
of nonlinear equations (8)(9), by using the method of 
simple iteration, also known as the method of fixed-point 
iteration (Burden, at al 1981). The initial 
approximation (;,'i,, y*) k ^0 = (X,Y) is appropriate, where 
<X,Y) denotes the initial Laborde's Easting, Northing 
coordinates, from which the False Easting and False 
Northing, the scale factor k 0 , and the Gaussian radius R0 
(equation (5)> were removed. In the case of Madagascar 
Grid (Laborde Projection Tables 1944), only two 
iterations are necessary to achieve the required 
accuracies . However, in the context of this paper, in 
the general application of the l.abordt? projection, it is 
better to allow for as many iterations as necessary for 
the complete numerical convergence.

In the final step of the inverse Laborde equation 
(conformal sphere to ellipsoid, the inverse of Step 1), 
if the Gaussian conformal latitude equations are not 
available, the ordinary Mercator equations are used again 
in a precisely inverse order to that described in the.1 
forward equations. In this case, the inverse form of the 
linear equations (1) must be used.

The equations for the scale factor k as a function of 
lat, Ion on the ellipssoid are derived from the fact that 
a sequence of conformal transformations, performed in 
succession, produces a conformal transformation with the 
resultant scale factor equal to the product of the 
individual scale factors. Again the scale factor 
equations of the Transverse Mercator projection and the 
regular Mercator projection (if applicable) are 
obtainable from any standard software package. The scale 
factor associated with equation (1) is of course the 
Gauss constant ratio c given by equation (2>. 
The derivation of the scale factor associated with the 
Laborde conformal polynomial (8)(9) is only a little more 
complicated. Usiriq the complex numbers notation, mapping 
(8)(9) may be written as

<B+Ai)z* (12) 

where 

Z = Y H- Xi, ? =• y + xi, i=»=~l (13)

From the theory of conformal mapping (analytic functions) 
we have a direct expression for the scale factor at the 
arbitrary Gauss-Schreiber coordinates (x,y)s

k(x,y) = CdZ/d23 <«. v > == 1 + 3(B+Ai>(y+xi)= (14)

This equation may be programmed using complex arithmetic 
or treating separately the real and imaginary parts.

Remarks in programming of the scale factor sequence, it 
is important to always transform the point of evaluation, 
given at a start as an arbitrary point (lat,Ion) on the 
ellipsoid, to the intermediate surface appropriate for
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the -transformation component being evaluated.
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